
External work and internal work 
 
Consider a load gradually applied to a structure.  Assume a linear relationship exists between the 
load and the deflection.  This is the same assumption used in Hooke’s Law in the previous 
chapter, and shown by experiment to be true within the “linear elastic” range for most materials. 
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note:  If another force besides P occurs at the location of P, further d  will occur without further 
increasing the magnitude of P.  P remains constant, so the additional work done by P is P
d  (rectangular P versus   graph).  This is important in the derivation of the unit load 

method later on. 
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This external work is converted to internal energy (strain energy) 
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So, the total strain energy in the beam of length L, is 
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For a truss (axial force S only), 
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Equating External and Internal Work  
 
This concept can be used to find  or  at a point. 
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This method is quite limited in application since it is applicable only to deflection at a point of 
concentrated force.  Also, if more than one force is applied to the system, a solution becomes 
impossible since there will be many deformations. 
 

Method of virtual force (unit load method) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
External 
work must 

equal the internal strain energy. 
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Compared with the previous section, this is a more useful derivation of internal strain, which 
applies to multiple loads, none of which are required to be at the location in which we want to 
find the deflection. 
 
Now imagine that the actual loads 21 PandP  are gradually applied to case “b”. 
 
Equating external work and internal strain energy yields ; 
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 dL*uand*1  are the extra “rectangular” work values as described in the previous section. 

 
The strain energy and work done must be the same whether the loads are applied together or 
separately, from conservation of energy. 

*1  must cancel with  dL*u  

i.e.   dL*u*1   or  dL*u*1  where “1” in the second expression corresponds to an 

external unit couple. 
 
note: “1”and “u” are virtual values and ""and,"dL",""   are actual values. 

 
We need to find dL and u in terms of actual, measurable, quantities. 
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note:  the upper case “M” corresponds to the moment from the “actual” values (moment resulting 
from 21 PandP  in the picture above), while the lower case “m” corresponds to the moment 
from the “virtual” unit force. 

 

  
L

0 A

2
2

dAydx
EI

Mm
)dx

EI

My
)(dA

I

my
(*1   But, IdAy

A

2   



 
So, 
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where m = bending moment from unit load and M = bending moment from actual loads  
 
Also, 
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m = bending moment from unit couple and M = bending moment from actual loads 
 
Now is a good time to recap some of the minor assumptions that may not have been explicitly 
stated so far: 
 
Small angle approximations.  These were used in the derivation bending stress formula, 

stress =
I

My
, which has been used in this section.  Small angle approximations are valid for most 

structural engineering applications. 
Neglecting of axial deformations.  Nowhere in this section did we include axial stress and strain 
of the beam, only axial stress and strain of the “internal fibers.”  This will be shown in a later 
section to be a valid assumption. 
Conservative forces.  Consider a beam loaded by gravity.  The beam will deform, and the forces 
will thus hit the beam at an angle.  This curvature is ignored in our force analysis, since the 
difference in solutions is negligible, as long as the small angle approximation is valid.  This 
assumption has been used in previous chapters, and will continue to be used in all later chapters 
as well.   
Engineering strain, rather than true strain.  This assumption was stated in the section on 
“Hooke’s Law” in the previous chapter.  This assumption was used in the current section since 

the strain of the “internal fibers” was taken to be 
dx

dL
rather than 
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will continue to be used in later chapters, since the difference in solutions is almost always 
negligible.   
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note:  signs can be tricky, which is one of the reasons why this method should be limited to 

beams and very simple frames. 
note:  It doesn’t matter where we take our “origins” as long as we’re consistent. 

note:  This problem could have been solved using BABC2
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note:  In this problem, as a whole, moments that deform the structure clockwise, are treated as 

positive.  Those that deform ccw are negative.  This determines the sign convention for M 
and m values.  This is not to be confused with the sign convention for the solutions.  
Positive solutions   deformation occurs in the directions assumed on the unit force 
diagrams. 



 
 
Instead of “dL” being a non-measurable quantity associated with internal “fibers”, it can be the 
actual change in length of a truss member. 
 

 dL*u*1    dL = 
AE

SL
   S = internal force in a given member due to actual loads 


m
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 (truss) 

u = internal force in a given member due to a fictitious unit load at the point and in the direction 
where the deflection is sought 
L = length of member 
A = cross-sectional area of member 
E = modulus of elasticity of member 
m = total number of members 
 
e.g. 

 
 
 
 
 
 
 
 
 
 
 
 

Not all L or all A are the same, but for simplification the 

A
L is always the ratio 

same in this example. 
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note:  Finding the rotation of, for instance, member bc is equivalent to finding the relative 
displacement between ends b and c divided by the length bc. 
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