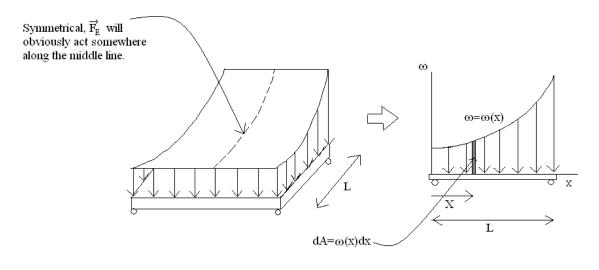
Distributed loading



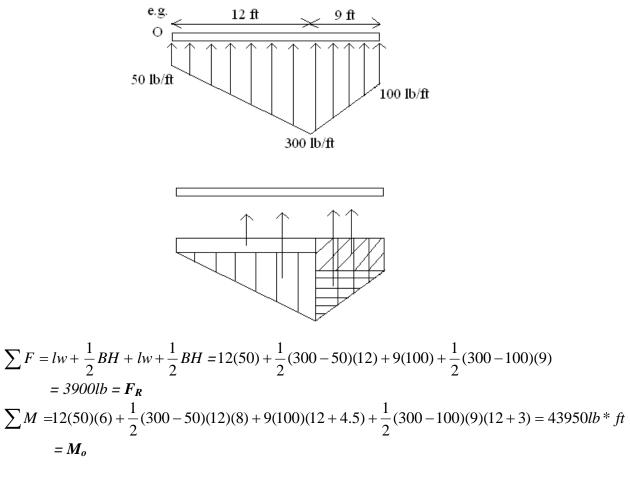
$$F_{R} = A = \int_{L} \omega(x) dx \qquad M_{RO} = \int_{L} x \omega(x) dx$$

"d" = $\overline{x} = \frac{\int_{L} x \omega(x) dx}{\int_{L} \omega(x) dx}$

 $\omega(x) = \text{density function} = \text{force per unit length (i.e. 40(x²+2) could be } \omega(x) \text{ for the ramp above)}.$ For uniform density, the magnitude of the constant (i.e. $\omega(x) = 40$) affects F_R but not \overline{x} .

e.g.

Given: Density at the three vertices of the triangular + rectangular distribution. Find: F_R and its location measured from O, for equivalency. (see pic below)



$$\frac{1}{x} = \frac{43950}{3900} = 11.27 \, ft$$

note: For a triangular distribution, the equivalent force $\frac{1}{2}$ BH is located a distance along its base (from the peak side) equal to $\frac{1}{3}$ length.