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Beams – bending moment diagrams and shear force diagrams 
 
External forces on a frame create “internal” forces at each connection, and they also 
create internal forces within each member, which tend to deform it. 
 
 

 
 
 
 
 
Nc is an axial (tensile or 
compressive) force, which is a type 
of force we’ve already dealt with.  
Note equal and opposite forces on 
each piece of the beam, from 
Newton’s 3rd Law. 
 
 
 
 
 
 

 
Shear and bending moments within a beam are non-zero if: 
1)  The beam is a two force member but is not straight. 

 
2)  The beam is subjected to multiple forces (other than at the joints). 

 
 
 
note:  The sense of V and M drawn 
to the left and above is treated as 
positive in structural engineering. 
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Cutting Method 
 
We will now develop methods for drawing shear force and bending moment diagrams 
that illustrate shear and moment magnitudes at every point along a beam.  We will not be 
concerned with axial forces, since all external forces will act perpendicular to the 
members. 
Picking the right size beam requires knowledge of V and M at each point along the 
beam’s axis.  As we will see in the next outline “Mechanics of Materials” and the 
following outlines on concrete and steel design, one can then use appropriate formulas to 
determine the required cross sectional area.  Graphs of V and M as functions of x are 
called shear force diagrams (SFD) and bending moment diagrams (BMD). 
The cutting method is useful for: simple distributed loads where a complicated w(x) 
function is not given. 
 
Process: 

1) Find support reactions 
2) Find equations for V and M from equilibrium equations 
3) Find peak values 
note:  signs are important! 
note:  assumed sense of V and M is important! 

Look over the following examples to fully understand this method. 
 
e.g. 1 
Given:  8 ft beam connected with fixed support and subjected to distributed load shown. 
Find: SFD and BMD for the beam. 

 
Support reactions: 
 
Ax = 0 
+   0400: AyFy lbAy 400  

  ftlbMMM AAA *16000)4(400:  

 
magnitude and location of distributed load on each 
piece must be in terms of x as shown. 
+   )(504000)(50400: xVVxFy  

  0)
2

)((50)(4001600: M
x

xxM cut  

160025400 2  xxM  
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note:  Fixed beams like this are sometimes tapered (thicker near the support) in order to 

be cost effective, since we can see that the forces are large only near the support. 
 
 
e.g. 2 
Given:  Beam supported at both ends.  Distributed load and concentrated force (see pic 

below). 
Find:  SFD and BMD for the beam. 
 

 
 
Support reactions: 
Ax = 0 
Ay = Cy = 9kN (symmetry) 
 
0  3x  
 
choose left side:  from similar triangles (or y = mx 

+ b), 
m

mkN
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  22

2

1
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2
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9: xVVxFy  

  )]6(
3
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0 M  
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Graphical Method 
 
This method is useful for:  Anytime, but especially for complicated distributed loads 
where w(x) is give as a function 
 
Process: 

1) Find support reactions 
2) Find equations for V and M using integration 
3) Find peak values 

 

V(x) =  dx)x(w   M(x) =  dx)x(V  

 
note:  A point load changes V(x) AT THAT POINT by the amount of the point load.  An 

external moment changes M(x) AT THAT POINT by the amount of the external 
moment.  Work from left to right!  Assumed sense of V and M is still important, 
and w(x) is positive in downward direction. 

Look over the following examples to fully understand this method. 
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e.g. 1 
Given:  8 ft beam connected with fixed support and subjected to distributed load shown. 
Find:  SFD and BMD for the beam. 
 

Support reactions: 
 
Ax = 0 
+   0400: AyFy lbAy 400  

  ftlbMMM AAA *16000)4(400:  

 
0)0(:0   Vx   0)0( M  

400400)0()0(:0   VVx  

 16001600)0()0(   MM  

xdxVxVx
x

5040050)0()(:80
0

   

  
x

xdxMxM
0

50400)0()(  

 = -1600+400x-25x2 

 
     (compare with e.g.1 for “cutting method”) 
e.g. 2 
Given:  Beam shown will fail for M>30 kip*ft or V>8kip at any point. 
Find:  Largest distributed load w possible (see pic below). 
 

 
Support reactions: 

  wAyAywwM B 70)6()8)()(6(
2

1
)3)((6:  

  wByBywwwFy 20)(6))(6(
2

1
7:  

 
0)0(:0   Vx   0)0( M  

00)0()0(:0   VVx   0)0( M  

126
)0()(:60

2

0
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xdx

w
VxVx

x

   

  
3612

)0()(
3

0

2 wx
dx

wx
MxM

x

   
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w
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12

)6(
)6(:6

2

    w
w

M 6
36
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3

  
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wwwAyVVx 473)6()6(:6    

 wMM 60)6()6(    

wxxxwwwdxVxVx
x

  10)6(4)6()(:126
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022)12()12(:12   wwByVVx   OK 

 00)12()12(   MM     OK 
 

 
 
Mmax = 30 kip*ft = 6w     Vmax = 8 kip = 4w 
wmax = 5 kip/ft       wmax = 2 kip/ft 
 
wmax = 2 kip/ft 
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e.g. 3 
Given:  Beam with supports shown.  Symmetrical distributed loads. 
Find:  SFD and BMD for the beam. 
 

Support reactions: 
From symmetry, Ay = Ax = 0 

By = kip18)]3)(6(
2
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note:  w(x) from 126  x  is 3
2

1
x  NOT just x

2

1
 because our origin is at the far left 

side of the beam, not the middle of the beam. 
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