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 “Statics” is typically the first course to which structural engineering students are 
exposed.  In this course, the structures are simple enough that all relevant forces can be 
determined without knowledge of the physical materials that the structures are made of.  
In fact, the structures in this course can be assumed rigid, even though no real life 
structures are truly rigid.  By the end of the course, the students should be able to apply 
the equations of static “equilibrium” to any structure, by creating “free-body-diagrams.”  
A carefully chosen free-body-diagram is the starting point when analyzing any real life 
structure, whether it is an entire building, a component of a building, or a machine, 
biological structure, etc.  By solving many statics problems, students may begin to 
develop an intuition for the “path” that forces tend to take within certain kinds of 
structures.  More importantly, as we will see in later outlines, a carefully chosen free-
body-diagram is almost always the starting point when deriving important structural 
engineering principles beyond “statics.” 
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Force equilibrium 
 
For an object not to be accelerating, the following must be satisfied: 

  0Fx  

  0Fy  

 
e.g. 1 

Given:  The total length of cord is 4 feet.  CD =1.5 ft. AC =1 ft.  D=10lb.  Ignore mass 
and size of pulleys. 

Find:  Weight of B 
 

 

AB = BC =
2

5.14 
=1.25 ft. 

When 3 sides of a triangle are known: 68.
)25.1)(25.1(2

125.125.1
cos

222




      

  4768.cos 1  




 5.23
2

47  

Tension=T=10 lb 
   05.23sin105.23sin10:Fx  

+   BB FFFy 05.23cos105.23cos10: 18.3 lb 

 
 
note:  if FB had turned out to be a negative value, then our assumed direction on the far 

right diagram would need to be reversed. 
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e.g. 2 
Given:  Crate A is to be hoisted at constant velocity (this is a statics problem).  Max 

tension in both ropes is 100 lb. 
Find:    and (WA)max 
 

 
 

cos=
13

5
 67  

 
   067coscos100: 1TFx   

+   67sinsin100: 1TFy  WA = 0 

 
But, T1 = WA 
From   ,0Fx  cos=WAcos67° 100 (cos 1 WAcos67° 100) 

Substitute into Fy : 

100sin[ 1cos (WA cos67° 100)]-WA sin67°-WA = 0    WA = 51 lb 
 = 78.5° 
 
note: If WA turned out to be > 100, then we would need to redo the calculation, this time 

setting WA=100 and solving for T2.  This would then yield the correct value of  
and T2. 

 
 
e.g. 3 

 
 
Draw a free body diagram at E and 
solve for TEC and TEG.  Then, draw a 
free body diagram at C and solve for 
TCD and WB. 
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note:  Resultants in three dimensional space are easily found as well, using 

    0FzFyFx  

 
note:  Methods that utilize equilibrium are generally preferred in engineering, whereas 

vector methods such as the parallelogram law and the “dot product” are typically 
used to illustrate math concepts. 

 

Moments 
 
e.g.’s 

 
Magnitude of moments about pivot O: 
 
(a)  F*h  (b)  F*hsin  (c)  F*(L+hcos)  (d)  F*h 
 
 
note:  the “cross product” can be used as well to determine the moment 

The following examples essentially use the distributive law of cross products. 
 
 
e.g. 1 

 
Mo = Fx*h 
 
or 
 
Mo = Fy*d 
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e.g. 2 
Given:  Length and height of lever, magnitude of force. 
Find:  max, which yields the maximum moment about O, and min, which yields the 

minimum moment. 
 

 
Mo = (40cos)(2)+(40sin)(8) = 
80cos+320sin(Mo)min

min=2.90rad x 
rad
deg180

=166° 

note:  

ft

ft

8

2
tan 1 14°  and 180°-14°=166° 

which is what we found above. 
 
In other words, if the line of action of the force passes through point O, then there is no 
moment (Mo=0).  This, of course, makes intuitive sense. 
 
Mo’ = -80sin+320cos= 0  

max = 1.326rad x 
rad
deg180

 = 76°  

Mo = 330 lb = (Mo)max 
 
note:  the following example could be solved using the “triple scalar product”.  However, 

suffice to say, it is really the same as previous problems if the axes are rotated so 
that the z axis points into the page. 

 
 
e.g. 
Given:  Torque of 80 lb*in required to loosen the nut (Mz=80). 

   Dimensions and orientation of flex-head wrench given. 
Find:  Required force F to be applied to the end of the wrench. 
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Mz = Fd 
d =.75+10sin60° 
80 = F*(.75+10sin60°)  F 8.5 lb 
 

Moment couple 
O is an arbitrary point in space 

The two F forces are located in the same 
plane and are of equal magnitude. 
 

Mo = Ar x (- F ) + Br x F  (summation of 
cross products) 

Mo =( Br - Ar ) x F  

Since ( Br - Ar ) = r , 

Mo = r  x F  where F is one of the forces 

and r is the distance between the couple. 
 

 

For most problems, r  can be expressed simply as d, the perpendicular distance between 
the couple.   
 
 

Mo = Fd 
 
 
 
 
 
 

 
 
 

 
The shaft pictured below could be 
anywhere on the wheel and would have 
the same moment about its axis (as long 
as it is perpendicular to the wheel).  The 
moment would be less than Fd for an 
axis not perpendicular to the wheel. 
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Equivalent force for rigid body 
 

 
 
By looking at the above diagram from right to left, we can see that a force and a moment 
can be reduced to a single force located at a certain distance. 
 
If there are multiple forces, then FRx=Fx  and FRy =Fy . 

F R = < FRx, FRy > 

M Ro=Mo  

 

note:  the magnitude and direction of F R is independent of the location of O.  But, M Ro 

depends upon the position vectors r and therefore depends upon the location of O. 
 

F E would have the same magnitude as F R but would be located at a distance 

d= M Ro F R, a distance from the chosen point O. 
 

note:  F E and its line of action is the only possible F E for a given system.  Where you 
take the moment determines the magnitude and location of d, but it always puts 

F E on the same line of action. 
 
 
e.g. 1 
Given:  F1 = 2 lb, F2 = 1 lb, F3 = 3 lb 
Find:  equivalent force FE and location d of this force 
. 

 
 
MA = 2*1+1*2+3*3 = 13 lb*ft  

(this moment would be resisted by the person’s fingers   and palm of hand) 
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FE = FR = 2+1+3 = 6 lb 

FE*d = MA   d = 
6

13
2.1667 ft 

 
e.g. 2 
Given:  Three forces acting at the locations shown. 

Find:  Distance from A to the point where the line of action of F E intersects AB . 

Distance from B to the point where the line of action of F E intersects BC . 
 

 

lbFx 325
5

3
*250175   

 

lbFy 260
5

4
*25060   

RF  = 22 260325  = lb416  

 
 
 
 
 
 

note:

 
 

  

 RAM = 175*5+250* ftlb *745)35(*
5

4
*250)3(60)56(*

5

3
  

d = ft79.1
416

745
  
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OR 
  

 RBM = -175*6-60(3)-250* ftlb *2830)53(*
5

4
  

d’ = ft8.6
416

2830



 

 

Both solutions seem to place EF  along our expected line of action, as the above 
illustration shows. 
 
 
Going back to the original question and solution   

 
Looking first at the lower left portion: 
 
FEX*y + FEY*0 = 745 (found from 

 RAM ) 

 
 y 2.29 ft 

 
Now looking at the upper right portion: 
 
FEX*h - FEY*x = 2830  x  10.9 ft 
 

Equilibrium of a rigid body 
 
So far, we’ve looked at types of problems which are mostly academic.  Practical 
engineering problems involve taking applied forces and using engineering methods to 
calculate how those applied forces are distributed among the elements of your structure.  
This was discussed in the first chapter, titled “Introduction to Structural Engineering.”  
Now that we have the needed foundation, we will begin to look at more practical-type 
engineering problems. 
 

Previously, we’ve seen that F E 
creates a different moment 
depending on the location of O.  In 
the previous example, shown to the 
right, we summed moments about 

point A to find the location of F E.  
This moment is resisted by the 
connection at A, otherwise the whole 
structure would clearly tip over.  In 
the example pictured to the right, 
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there are actually three “support reactions” at point A.  There are two forces, along with 
the resisting moment described two sentences ago.  These three support reactions 

combine to create a vector that is exactly equal and opposite F E.  Thus, the structure as a 
whole is static.  So, we have three unknowns at point A, and we need three equations. 
 

O may lie either on or off the body and can be a point or an axis. 
 
OR,             A,B, and C must  not lie on the same line.                   
 
 

 
 
Alternatively,  

A line passing through points A and B must NOT be perpendicular to 
the “a” axis.  If they were allowed to be perpendicular, then there 

could be F R 0 which is perpendicular to the “a” axis (  0Fa ) 

and has a line of action along AB (   0MM BA ).  To prevent 

this, the condition can simply be stated that AB cannot be 
perpendicular to the “a” axis. 

 
e.g. 1 
Find:  Support reactions (see pic below) 

 
 

  BxBxFx 045cos600: 424N 

  AyAyM B 0)2)(.45cos600()7()5)(45sin600()2(100: 319N 

  ByByAyFy 020010045sin600:  405N 

OR 

  ByByM A 0)7(200)5(100)2)(.45cos600()2)(45sin600()7(: 405N 

 











0Mo

0Fy

0Fx











0M

0M

0M

C

B

A











0M

0M

0F

B

A

a
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note:  AB not perpendicular to the x axis











0

0

0

A

B

M

M

Fx

 can be used. 

 
e.g.2 
Given:  The weight of each book is w and each has length “a”. 
Find:  Maximum distance d that the top book can extend over the bottom book, before the 

stack topples. (see pic below) 
 
Half of the book’s length can hang out over B.  Need to find 
the distance that the second book can hang over A. 
 

adx
a

dxd  112 2
   11 22

d
a

d
a

ax   

[normal(contact) forces not shown] 
tip over Mtop=Mmid 

middlew ( 0)() 1  dwx top  

0)()
2

( 11  dwd
a

w  

4

3

244
2

2 2111

aaa
ddd

a
dd

a
  

 
e.g. 3 
Given:  (see pic)  Spring constant k = 40N/m.  Spring is 
compressed .2m.  Angle of slope 30° as shown. 
Find: Support reactions at A in terms of FAx and FAy, and 

magnitude of resultant force at wheel bearing B. 
 
 
 
 

060cos:   BAx FFFx  

+   0860sin: BAy FFFy  

  0)1(.)275(.)125(.8: AxAyB FFM  

 
From  ,Fx  FAx = FBcos60° 

From  ,Fy  FAy = 8 - FBsin60° 

Substitute into  BM  

 
FB = 6.38N      FAx = 3.19N     FAy = 2.47N 
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Two and Three Force Members 
 

When forces are applied at only two points on a member, F A must be of equal 

magnitude ad opposite direction to F B  (see pic).  The line of action is along AB.   

 
 

If a member is subjected to forces at only three points, then ,, 21 FF


 and 3F  must be 
either concurrent:  
 
 
 
 

 
or parallel:  
 
 
 
 
Knowing about two and three force members can sometimes simplify calculations and 
can also serve as a visual check for free-body diagrams which you think contain forces at 
only a few locations. 
 
e.g. 
Given: An external force resisted by a two-force link and a pin. (see pic) 
Find:  The magnitude of the support reactions FA and FB and their directions A and B. 
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B= 1tan 

2.

2.
= 45° 

A= 1tan 

4.

7.
= 60.3° 

 
Looking at the free body diagram of the three force member: 
 








045cos3.60sin:

045cos4003.60cos:

BA

BA

FFFy

FFFx
 

 
SolvingFA = 1.07kN    FB = 1.32kN 
 
 

Trusses 
 
Assumption:  no friction, connections treated as points 
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The weightless link will become important in the following section when we talk about 
trusses. 
 
 
 
 
A truss is a structure composed of slender members joined together at their end points. 
 
Truss assumptions: 

1) All loadings are applied at the joints.  
2) The members are joined together by smooth pins.  In cases where bolted or 
welded joint connections are used, this assumption is satisfactory, provided the 
joining members intersect at a common point. 

 
So, each truss member acts as a two-force member. Therefore, the forces at the ends of 
the member must be directed along the axis of the member. 
 

 
 
The Method of Joints 
 
To find support reactions, we would normally ignore the forces within the members since 
they are internal to the support reaction’s free body diagram.  Instead, if we consider the 
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equilibrium at each joint of the truss, then the member forces become external forces on 
the FBDs of the joints.  The force system acting at each joint is concurrent.    0Fx  

and   0Fy  must be satisfied for equilibrium.  Therefore, we should start at a joint 

having at least one known and at most two unknown forces. 
The correct sense of direction of an unknown member force (tensile or compressive) can 
in many cases be determined by “inspection.”  In more complicated cases, the sense of 
the unknown member force can be assumed.  A positive answer indicates that you 
guessed correctly.  A negative answer indicates that the sense shown on your FBD must 
be reversed.  In this latter case, write the answer as positive but change ( C) to (T) or 
vica-versa. 
 
e.g. 1 
Given:  Dimensions of a truss for a balcony.  Resultant loads act at B and C. 
Find:  The force in each member and state compression ( C) or tension (T). 

 
 

 

0)
46

6
(:

22



  BCCD FFFx  

+ 02)
46

4
(:

22



  CDFFy  

FCD = 3.61kN ( C)      FBC = 3kN (T) 
 
 

03:   ABFFx     FAB = 3kN (T) 

+ 03:   BDFFy     FBD = 3kN ( C) 

 
 

0)
46

6
()

46

6
(61.3)

23

3
(:

222222









  EDAD FFFx  
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+ 0)
46

4
()

46

4
(61.3)

23

2
(3:

222222









  EDAD FFFy  

FAD = -2.7FAD = 2.7kN (T)    FED = -6.31FED = 6.31kN ( C) 

 
 
e.g. 2 
Given:  Dimensions of a truss (see pic below).  Tmax = 2kN, Cmax = 1.2kN, for any 

member.  Vertical external force P at B and horizontal force at C of equal 
magnitude P. 

Find:   Pmax 

 
 = 30° (law of sines) 
 = 120° 

  060cos: BCAB FFFx  

+   060sin: PFFy AB  

FAB = P
P

155.1
60sin




 ( C) 

FBC = PP 577.60cot   ( C) 
 

  060cos30cos60cot: CDCA FFPPFx  
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+   060sin30sin: CDCA FFFy  

FCA = P
PP

73.2
60cot30sin30cos

60cot





 (T) 

FCD = 



P

P
58.1

60sin

30sin73.2
FCD = P58.1  ( C) 

 
 
 

  030sin58.1: PFFx AD  

FAD = PP 79.30sin58.1   ( C) 
 

 
 
Tensionmax = 2.73P    Compressionmax = 1.58P 
2kN = 2.73P     1.2kN = 1.58P 

P = 
73.2

2
732.6N    P = 

58.1

2.1
759.4N 

 
Pmax = 732.6N 732N  (at that point, member CA would be pulled apart) 
 
e.g. 3 
Given:  Dimensions of a double scissors truss and resultant forces at joint E and F. 
Find:  Force in each member. 

 
This problem is unusual 
because all joints have more 
than two unknowns, even if 
support reactions are known.  
However, the problem can be 
solved with the method of 
joints, by starting at joint E or 
F.   yEF = 0 

  FEB = 
45sin

P
 (T) 

Then, move on to joint B. 
 
 

 
e.g. 4 
Given:  Dimensions of a K truss and resultant forces at H,G, and F shown below. 
Find:  Force in each member. 
 
Here, we must calculate support reactions before we can do anything. 
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RA = RAy = RE = P
2

3
 

Start at joint A or E; 
i.e., 

Ay
F  = 0 FAB = 

45sin

*2/3 P
 ( C) 

 AxF  = 0   FAC = 

P*2/3  (T) 
 

And continue from there to solve the problem. 
 
 
Zero Force Members 
 
If two elements meet at a joint and are not collinear and there is no external force at that 
joint, then they’re both zero force members. 

 
 
If three elements meet at a joint, two of which are collinear, and there is no external force 
at that joint, then the third member is a zero-force member. 
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The Method of Sections 
The method of sections is usually used to find the loadings on just a few beams, 
efficiently.  The basic idea is that if a body is in equilibrium, then any part of the body is 
also in equilibrium.  Rather than dismembering every beam and applying particle 
equilibrium at each joint, we can “slice” through the whole structure and apply rigid body 
equilibrium to either of the two portions.      0Mo,0Fy,0Fx  must be 

satisfied for equilibrium.  O can be anywhere in space.  The other equations for 
equilibrium can also be used (see the beginning of the section “Equilibrium of a rigid 
body”).  We should create a section with at least one known and at most three unknowns. 
 
e.g. 1 
Given:  Bridge truss dimensions and equivalent forces at B, C, D. 
Find:  FGF, FCF, FCD 

 
Support reaction at E; 
 

 
   RE = 15kN 
Member forces; 
 

 
+   01045cos15: CFFFy  

 
FCD = 15kN (T) 
FCF = 7.07kN (T) 
FGF = 20kN ( C) 
 
 

e.g. 2 
Given:  Warren truss dimensions and equivalent forces at B, C, D shown below. 

Find:  FGH, FCG, FCD 

 

Support reaction at E; 
RE = 15kN (same as e.g. 1) 

=  30)
3

5.1
(sin 1  

h = m60.25.13 22   

  )5.1(10)35.1(15:GM  

 0)60.2(  CDF  

+   30cos15: FCGFy    

 010   

  0)9(10)6(10)3(10)12(: EA RM

  0)3()3(15: CDF FM

  01545sin07.7: GFFFx
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  30sin77.5: HGFFx  

 02.20   
FCD = 20.2kN (T)      FCG = 5.77kN (T)      FHG = -23.1 = 23.1kN ( C) 
 
Comparing e.g. 1 and e.g. 2, the bridge seems to be more economical, for this kind of 
loading. 
 
note:  The method of joints and the method of sections can be easily applied to 3D “space 

trusses.”  For the method of joints, there would be 3 equations for particle 
equilibrium at each joint.  For the method of sections, there would be 6 equations 

       0MzMyMx,0FzFyFx . 

 
 
 
Remember that one of our truss assumptions was that the loads were applied only at the 
joints.  Our truss models pictured in the previous examples show loads only at the joints.  
But, in real-life, is this true?  The answer is yes, as we can see in the diagram below. 
 
 

 
 
The load from the road and vehicles rests entirely on the beams, as we can see in the 
exaggerated diagram.  The beams are connected to the bottom joints of the trusses, so the 
load is transferred entirely to those bottom joints.  Our assumption is thus valid.  Finally, 
the truss rests on the ground at each end of the valley, so the load is entirely transferred to 
the ground.  The beams connecting the top joints of the trusses are not shown but 
typically would be present.   
 
It’s always important not only to know how to analyze a component of a structural 
system, such as the truss examples we have done in this section, but also to understand 
the load path for the entire system.  The above diagram and explanation described the 
load path for a truss bridge.  The load path for a truss roof in a gymnasium would be 
different.  We will take a more quantitative look at the load paths for a simple building in 
a different outline. 
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Equilibrium of a rigid body + Newton’s 3rd Law 
 
We’ve already analyzed frames and machines in the section “Equilibrium of a rigid 
body”, but if we apply the same principle that was used for the “method of sections” – if 
a body is in equilibrium then any part of the body is also in equilibrium – then frames and 
machines (or any kind of structure) can be broken into pieces and analyzed using 

    0Mo,0Fy,0Fx  (or the other equations for rigid body equilibrium) for 

each piece. 
 
Important:  Forces common to any two contacting pieces must act with equal and 
magnitudes and opposite sense on the respective members (Newton’s 3rd Law).  These 
two principles – equilibrium for each part, and equal and opposite forces between parts – 
enables us to find support reactions when there are fewer “knowns” than in previous 
problems in this chapter, and now we can find internal reactions which we could not do at 
all before. 
 
 
e.g. 1 
Given:  Three-hinged arc with external forces applied at locations shown. 
Find:  Reactions at A, B, C. 
 

 
 
3 equations per free-body diagram 
  6 total equations = 6 unknowns 
 
note:  If there was an external force at C, 
it would go on either the right piece or the 
left, but NOT both 
 
left side: 
 

  )3(8)34()8(:1 AxAyM C  

= 0 

  )8()34()4(8: CyCxM A  

 = 0 
+   0: CyAyFy  
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right side:    0)4(5)342()24(:2 BxByM C  

    0)2(5)342()24(: CxCyM B  

  +   0: BxCxFx  

From  ,BM  
24

)2(5)342(





Cx

Cy  

Substitute into  ,AM    Cx = 2.386kN     Cy = 1.91kN    Bx = 2.386kN      By = 6.91kN 

       Ay = -1.91Ay = 1.91kN (down)   Ax = 5.6kN 
 
note:  As the structures become more complex, it is easy to see that a calculator which 

can solve systems of linear and nonlinear equations simultaneously, can come in 
quite handy.  The TI-89 calculator is one such calculator which has this 
capability. 

 
 
e.g. 2 
Given:  Frame supported by a hinge at A and a roller at D.  100kg mass at F. 
Find:  Support reactions and all internal reactions at labeled joints. (see pic below) 
 

entire frame: 
 

  0)5.4()5.2(981: DxM A Dx = 

545N 

  0: DxAxFx Ax = 545N 

+   0981: AyFy Ay = 981N 

 
horizontal member: 
 

  0)6.1(45sin)5.2(981: BEC FM  

  045cos: BEFCxFx  

+   045sin981: BEFCyFy  

FBE = -2168FBE = 2168N ( C) 
Cx = 1533N      Cy = -552Cy = 552N (down) 
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e.g. 3 
Given:  Dimensions of pruning shears. We need a cutting (normal/contact) force of 20 lb. 
Find:  Squeezing force P applied at location shown below. (see pic below) 

 
upper blade: 
 

 0)1(20)6(.45cos)4.1(45sin: BCBCD FFM FBC = 14.14 lb 

  045cos: DxFFx BC Dx = 10.0 lb 

 
lower jaw/upper arm: 
 

 0)8.6.3()6(.10)1(20: PM A P = 3.2 lb 

 
note:  started with a piece that had at least one known and at most three unknowns. 
note:  these pruning shears enable one to multiply their grip force by over 5 times. 
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Distributed loading 

 
 
 

FR = A = 
L

dx)x(   MRO=  
L

dx)x(x  

“d” = x = 







L

L

dx)x(

dx)x(x

 

 
 )x(  density function = force per unit length (i.e. 40( 2x +2) could be )x( for the 

ramp above).  For uniform density, the magnitude of the constant (i.e. )x( = 40) affects 

FR but not x . 
 
e.g. 
Given:  Density at the three vertices of the triangular + rectangular distribution. 
Find:  FR and its location measured from O, for equivalency. 
(see pic below) 
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 wlF BH
2

1
BHlw

2

1
 = )9)(100300(

2

1
)100(9)12)(50300(

2

1
)50(12      

= 3900lb = FR 

ftlbM *43950)312)(9)(100300(
2

1
)5.412)(100(9)8)(12)(50300(

2

1
)6)(50(12 

  = Mo 
 

x = 
3900

43950
11.27 ft 

 

note:  For a triangular distribution, the equivalent force BH
2

1
is located a distance along 

its base (from the peak side) equal to length
3

1
. 

 
 

Beams – bending moment diagrams and shear force diagrams 
 
External forces on a frame create “internal” forces at each connection, and they also 
create internal forces within each member, which tend to deform it. 
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Nc is an axial (tensile or 
compressive) force, which is a type 
of force we’ve already dealt with.  
Note equal and opposite forces on 
each piece of the beam, from 
Newton’s 3rd Law. 
 
 
 
 
 
 

 
Shear and bending moments within a beam are non-zero if: 
1)  The beam is a two force member but is not straight. 

 
2)  The beam is subjected to multiple forces (other than at the joints). 

 
 
 
note:  The sense of V and M drawn 
to the left and above is treated as 
positive in structural engineering. 
 
 
 
 
 

 
Cutting Method 
 
We will now develop methods for drawing shear force and bending moment diagrams 
that illustrate shear and moment magnitudes at every point along a beam.  We will not be 
concerned with axial forces, since all external forces will act perpendicular to the 
members. 
Picking the right size beam requires knowledge of V and M at each point along the 
beam’s axis.  As we will see in the next outline “Mechanics of Materials” and the 
following outlines on concrete and steel design, one can then use appropriate formulas to 
determine the required cross sectional area.  Graphs of V and M as functions of x are 
called shear force diagrams (SFD) and bending moment diagrams (BMD). 
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The cutting method is useful for: simple distributed loads where a complicated w(x) 
function is not given. 
 
Process: 

1) Find support reactions 
2) Find equations for V and M from equilibrium equations 
3) Find peak values 
note:  signs are important! 
note:  assumed sense of V and M is important! 

Look over the following examples to fully understand this method. 
 
e.g. 1 
Given:  8 ft beam connected with fixed support and subjected to distributed load shown. 
Find: SFD and BMD for the beam. 

 
Support reactions: 
 
Ax = 0 
+   0400: AyFy lbAy 400  

  ftlbMMM AAA *16000)4(400:  

 
magnitude and location of distributed load on each 
piece must be in terms of x as shown. 
+   )(504000)(50400: xVVxFy  

  0)
2

)((50)(4001600: M
x

xxM cut  

160025400 2  xxM  
 
 
 

 
note:  Fixed beams like this are sometimes tapered (thicker near the support) in order to 

be cost effective, since we can see that the forces are large only near the support. 
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e.g. 2 
Given:  Beam supported at both ends.  Distributed load and concentrated force (see pic 

below). 
Find:  SFD and BMD for the beam. 
 

 
 
Support reactions: 
Ax = 0 
Ay = Cy = 9kN (symmetry) 
 
0  3x  
 
choose left side:  from similar triangles (or y = mx 

+ b), 
m

mkN

x

xw

3

/3)(
 )(1)(

2
x

m

kN
xw   

 

  22

2

1
90

2

1
9: xVVxFy  

  )]6(
3

1
[)6(

2

1
)6(9: 2 xxxM cut  

0 M  
3)6(

6

1
)6(9 xxM   
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Graphical Method 
 
This method is useful for:  Anytime, but especially for complicated distributed loads 
where w(x) is give as a function 
 
Process: 

1) Find support reactions 
2) Find equations for V and M using integration 
3) Find peak values 

 

V(x) =  dx)x(w   M(x) =  dx)x(V  

 
note:  A point load changes V(x) AT THAT POINT by the amount of the point load.  An 

external moment changes M(x) AT THAT POINT by the amount of the external 
moment.  Work from left to right!  Assumed sense of V and M is still important, 
and w(x) is positive in downward direction. 

Look over the following examples to fully understand this method. 
 
e.g. 1 
Given:  8 ft beam connected with fixed support and subjected to distributed load shown. 
Find:  SFD and BMD for the beam. 
 
 

Support reactions: 
 
Ax = 0 
+   0400: AyFy lbAy 400  

  ftlbMMM AAA *16000)4(400:  

 
0)0(:0   Vx   0)0( M  

400400)0()0(:0   VVx  

 16001600)0()0(   MM  

xdxVxVx
x

5040050)0()(:80
0

   

  
x

xdxMxM
0

50400)0()(  

 = -1600+400x-25x2 

 
     (compare with e.g.1 for “cutting method”) 
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e.g. 2 
Given:  Beam shown will fail for M>30 kip*ft or V>8kip at any point. 
Find:  Largest distributed load w possible (see pic below). 
 

 
Support reactions: 

  wAyAywwM B 70)6()8)()(6(
2

1
)3)((6:  

  wByBywwwFy 20)(6))(6(
2

1
7:  

 
0)0(:0   Vx   0)0( M  

00)0()0(:0   VVx   0)0( M  

126
)0()(:60

2

0

wx
xdx

w
VxVx

x

   

  
3612

)0()(
3

0

2 wx
dx

wx
MxM

x

   

w
w

Vx 3
12

)6(
)6(:6

2

    w
w

M 6
36

)6(
)6(

3

  

wwwAyVVx 473)6()6(:6    

 wMM 60)6()6(    

wxxxwwwdxVxVx
x

  10)6(4)6()(:126
6

 

]
2

)6(
)6(10[

2
10610)6()(

22

6

w
w

wx
wxwwxdxwMxM

x

   

  wwx
wx

4810
2

2

  

wwwVx 2)12(10)12(:12    

 048)12(10
2

)12(
)12(

2

 ww
w

M  

022)12()12(:12   wwByVVx   OK 

 00)12()12(   MM     OK 
 



 32

 
 
Mmax = 30 kip*ft = 6w     Vmax = 8 kip = 4w 
wmax = 5 kip/ft       wmax = 2 kip/ft 
 
wmax = 2 kip/ft 
 
e.g. 3 
Given:  Beam with supports shown.  Symmetrical distributed loads. 
Find:  SFD and BMD for the beam. 
 

Support reactions: 
From symmetry, Ay = Ax = 0 

By = kip18)]3)(6(
2

1
[*2   

0)0(:0  Vx   0)0( M  

  
x

xxdxxVxVx
0

2 3
4

1
3

2

1
)0()(:60  

  
x

xxxdxxMxM
0

232

2

3

12

1
3

4

1
)0()(  

9)6(3)6(
4

1
)6(:6 2   Vx  

 36)6(
2

3
)6(

12

1
)6( 23 M  

918)6()6(:6   VVx  

 360)6()6(   MM  

22

6 4

1
31893

4

1
93

2

1
)6()(:126 xxxxdxxVxVx

x

   

         1854
12

1

2

3
36

4

1
3)6()( 3

2

6

2   x
x

dxxxMxM
x

 

   = 72
2

3

12

1 23  xx  
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0)12(
4

1
)12(3)12(:12 2  Vx   OK     072)12(

2

3
)12(

12

1
)12( 23 M   OK 

 
 

 
 

note:  w(x) from 126  x  is 3
2

1
x  NOT just x

2

1
 because our origin is at the far left 

side of the beam, not the middle of the beam. 
 
 

Friction 
 
Single contact block 
 

Moment equilibrium about point O is satisfied if Wx = 

Ph or 
W

Ph
x  .  The block will be on the verge of tipping 

if N acts at the right corner of the block. 
 

Verge of tipping
2

a
x     check:  N*F s  

 
Equilibrium of the block also requires F = P 
 

Verge of slipping N*F s  check:  
2

a
x   

 
 



 34

 
 
 
Multiple contact points 
 
 
 
Four possibilities: 
 
1)  No unknown external forces, no contact points necessarily have impending motion. 
 

 
 
6 unknowns 
6 equations (rigid body 
equilibrium) 
 
check:  FA AA N*  

 FC CC N*  

 
 

2)  Maximizing an external force (minimizing an angle); all contact points on the verge 
of slipping. 

 
5 unknowns 
3 equations (rigid body equilibrium) + 2 
equations (FA = ANA, FB = BNB) 
 
 
 
 
 
 

 
3)  Maximizing an external force, some (usually one) contacts points have impending 

motion (slipping or tipping) 
 

7 unknowns 
6 equations (rigid body 
equilibrium) + guess 
- FA = ANA, if A 
 slides first 
check:  NA 0  

FC CC N*  
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OR 
- FC = CNC, if C slides first 
check:  NA 0  
FA AA N*  
 
 
 OR 
- NA = 0, if rotation about C occurs first. 
check:  FA = 0 
FC CC N*  

 
4)  Maximizing an external force; forces contribute solely to tipping. 

(case 4 problems are fairly common – an example would be finding the maximum 
load a crane truck can hold before tipping) 
 

e.g. (case 3) 
Given:  Vertical force P applied at connection.  Mass of each block = 6 kg.  A = .2  B = 

.8. 
Find:   Largest force P before motion. 
 

 
045sin30sin:   ACBC TTFx  

+ 045cos30cos:   PTTFy ACBC  

From  ,Fx  TAC = 



45sin

30sinBCT
 

Substitute into  ,Fy  TBC cos30° 045cos)
45sin

30sin
( 




 P
TBC  

TBC = PP 732.
45cot30sin30cos

1



 

TAC = PP 5176.
)45cot30sin30(cos45sin

30sin




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+ 045sin5176.)8.9(6:   PNFy A  

PN A 366.86.58   

  PfrictFfrictFPFx AA 366.)(0)(45cos5176.:  

 
 

+ PNPNFy BB 634.86.58060sin732.)8.9(6:    

  PfrictFPfrictFFx BB 366.)(060cos732.).(:  

 
 
 
 
 

Guess:  (FA)frict = ANA 
 .366P = .2(58.86+.366P)Pmax = 40.2N 
 
Check:  (FB)frict = .366(40.2) = 14.7N 
 BNB = .8[58.86+.634(40.2)] = 67.5N 
 (FB)frict = 14.7 BNB = 67.5   OK 
 
note:  could have broken apart the frame, applied rigid body equilibrium, and made our 

guess at the beginning or the end, in that manner.  This would have been more 
difficult though since member lengths were not given. 

 

A note on redundancy 
 
Redundant supports are extra supports that are not necessary to hold the body in 
equilibrium. 

 
 
Redundancy is generally good, but it creates too many unknowns for our 3 (2D) 
equations or 6 (3D) equations of static equilibrium.  Note how most of the examples 
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throughout this chapter have used primarily pins or rollers, because multiple fixed 
supports   redundancy. 
The additional equations needed for redundant supports involve the physical properties of 
the body, which are studied in subjects dealing with the mechanics of deformation.  The 
following chapters on Mechanics of Materials and Classical Structural Analysis deal with 
redundant systems.  Redundant systems are commonly called “statically indeterminate” 
systems. 
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