Moment distribution method – Joint moments in a frame

Take the propped-cantilevered beam shown. It has no load. We'd like to know the general relationship between θ_a and M_{ab} (end moment of member ab at "a") or M_{ba} (end moment of member ab at "b")

$$EI\frac{d^4\upsilon}{dx^4} = \omega = 0$$

Initial conditions: $\upsilon(0) = 0$ $\upsilon(L) = 0$ $\upsilon'(0) = \theta_a$ $\upsilon'(L) = 0$

$$v = x(1 - \frac{x}{L})^2 \theta_a$$
 (skipped work)

$$\frac{d^{2}\upsilon}{dx^{2}} = \frac{-M}{EI} \Longrightarrow M(x) = E\frac{I}{L}(4-6\frac{x}{L})\theta_{a}$$
So, $M_{ab} = 4E\frac{I}{L}\theta_{a}$ and $M_{ba} = 2E\frac{I}{L}\theta_{a}$
OR
 $M_{ab} = S_{ab}\theta_{a}$, where $S_{ab} = S_{ba}$ = member stiffness = 4Ek_{ab}
where $k_{ab} = k_{ba}$ = stiffness factor = $\frac{I}{L}$

(FEM)

Lock the structure so that there are four fixed-end beams. Find the FEMs, including the total moment M at the center (ccw). Create an opposite moment shown (cw moment M) to "unlock" the beam. Joint j now rotates through an angle θ . Now, picture (e) is equivalent to picture (a) and we can proceed with the moment distribution.

$$\begin{split} m_{ja} &= S_{ja}\theta & Sum of the moments must equal \\ m_{jb} &= S_{jb}\theta & zero, so, (S_{ja} + S_{jb} + S_{jc}) \\ m_{jc} &= S_{jc}\theta & + S_{jd} \theta = M , where M is the \\ m_{jd} &= S_{jd}\theta & "external" moment at joint j \\ (1) \end{split}$$

(all θ are equal due to continuity)

If the members have the same E, but not necessarily the same I or L,
then
$$4E(k_{ja} + k_{jb} + k_{jc} + k_{jd}) \theta = M \Longrightarrow \theta = \frac{M}{4E\Sigma k}$$
 (2)

 $\sum k$ includes all members that connect at rotating joint (can vary depending on which end of beam)

These are called distributed moments (DMs). D = distribution factor = $\frac{k}{\sum k}$

Assumes constant E – usually the case since beams made of different materials are rarely connected together.

note: D depends only on member dimensions. The individual moments are just ratios of each other that add up to M - i.e. the "external" moment, M, is *distributed* among the connecting beams, according to their relative dimensions (stiffnesses).

 $m_{ai}, m_{bi}, m_{ci}, m_{di}$ - called the carry-over-moments, need to be found.

 $M_{_{ab}}$ and $M_{_{ba}},$ which were found on the previous page, can be equated with a "carry-over-

factor"; $M_{ba} = C_{ab}M_{ab}$; $C_{ab} = C_{ba} = \frac{1}{2}$

So,
$$m_{aj} = \frac{1}{2}m_{ja}$$
; $m_{bj} = \frac{1}{2}m_{jb}$; $m_{cj} = \frac{1}{2}m_{jc}$; $m_{dj} = \frac{1}{2}m_{jd}$
These are called carry-over-moments (COMs).
 $M_{ja} = (FEM)_{ja} + m_{ja} (= DM) + m_{ja} (= COM)$
 $M_{aj} = (FEM)_{aj} + m_{aj} (= DM) + m_{aj} (= COM)$

note: It is not yet clear how to find end moments for a frame when there is more than one joint that can rotate

note: sign conventions will become clear in the following examples

e.g. 1

If there are multiple rotating joint, then the joints must be continually locked and unlocked until the carry-over-moments are considered negligible (see the following example)

note: For all cycles : At a fixed support, DM is zero. At a joint across from a fixed support, COM is zero. For a span with no load, FEM is zero (this does not necessarily mean that M = 0 for that span).

e.g. 2

e.g. 3 e.g. 3

note: So far, joint translations are ignored in the moment distribution method. This can have an effect on the accuracy of joint moments. Previous analysis of the one bay frame (with beam uniformly loaded) resulted in the exact solution because it is symmetrical (and hence there are no relative displacements in the columns), and there is no side sway, from inspection. Lateral loading and/or non-symmetrical gravity loading can cause joint translations.

Works Cited

Hsieh, Yuan-Yu, and S.T. Mau. <u>Elementary Theory of Structures: Fourth Edition</u>. Prentice Hall. Upper Saddle River, NJ 1995.
Trifunce Miheile, Lesturer, University of Southern Colifernie, CE258, Eell 2005.

Trifunac, Mihailo. Lecturer. University of Southern California. CE358. Fall 2005.

APPENDIX

