Torsion

Above is a fixed, prismatic beam subjected to a torque at the right end.

 ϕ_{max} = angle of twist

 ϕ_x depends on distance x from the wall

 $\gamma_{\rm p}$ depends on distance p from the center

Assume distance bb' is very small and so the arc length bb' is approximately equal to a straight line bb'.

$$\phi_{\text{max}} = [\text{fraction of arc length change}](2\pi \text{ radians}) = [\frac{bb'}{2\pi r}](2\pi) = \frac{bb'}{r}$$

$$\gamma_{\text{max}} = [\frac{bb'}{2\pi(ab)}](2\pi) = \frac{bb'}{ab}$$
We can see that $\gamma_{\text{max}} = \frac{r\phi_{\text{max}}}{L}$ is really the same expression as above.
Also, $\gamma_p = \frac{p}{r}\gamma_{\text{max}} = p\frac{\phi_{\text{max}}}{L}$
 $\tau = G\gamma$

$$\tau_{\max} = G\gamma_{\max} = Gr\frac{\phi_{\max}}{L}$$
 $\tau_p = \frac{p}{r}\tau_{\max} = Gp\frac{\phi_{\max}}{L}$

We need to find a relationship between τ and T:

$$T = \int_{A} \tau_{p} p \, dA = \int_{A} \left(\frac{\tau_{max}}{r} p\right) p \, dA$$

If polar moment of inertia = I_p = $\int_{A} p^{2} dA$, then:

 $T = \frac{\tau_{max}}{r} I_p \Rightarrow \tau_{max} = \frac{Tr}{I_p} \rightarrow \text{general formula for a circular shaft subjected to torsion}$

$$\phi_{\max} = \frac{\tau_{\max}L}{Gr} = \frac{IL}{GI_p} \qquad \gamma_{\max} = \frac{r\phi_{\max}}{L} = \frac{\tau_{\max}}{G} = \frac{Ir}{GI_p}$$

 φ_{max} is often just written φ

note:
$$\phi_x = \frac{x}{L} \phi_{max} = \frac{\tau_{max} x}{Gr}$$
 (also note similarity of ϕ_{max} above to $\delta = \frac{PL}{EA}$)

Solid Bar:

$$T = \frac{\tau_{\max}}{r} \int_{\phi=0}^{2\pi} \int_{p=0}^{r} p^2 p \, dp \, d\theta = \left(\frac{\tau_{\max}}{r}\right) \frac{\pi r^4}{2} = \frac{\tau_{\max} \pi d^3}{16} \Longrightarrow$$
$$\tau_{\max} = \frac{16T}{\pi d^3} \text{ (solid shaft)}$$

note: recall from calculus that the extra p in the integrand is just an extra polar integration factor

Hollow Tube:

$$T = \frac{\tau_{max}}{r} \int_{\theta=0}^{2\pi} \int_{p=r_1}^{r_2} p^2 p \, dp \, d\theta = (\frac{\tau_{max}}{r}) \frac{\pi}{2} (r_2^4 - r_1^4) = (\frac{\tau_{max}}{2}) \frac{\pi}{32} (d_2^4 - d_1^4) \Longrightarrow$$

$$\tau_{max} = \frac{16Td_2}{\pi (d_2^4 - d_1^4)} \quad \text{(tube)}$$

e.g. 1

Given: Socket wrench transmits torque to a stuck bolt.

 $\tau_{allowable} = 460MPa$ G = 78GPa for the 8mm diameter, solid shaft shown Find: T_{max} and ϕ_{max} for this allowable torque value

$$\tau_{max} = \frac{16T}{\pi d^3} \quad T_{max} = \frac{(\tau_{allowable})\pi(8x10^{-3})^3}{16} = 46.25N*m \quad (F_{max} = \frac{T_{max}}{d})$$

$$\phi = \frac{\tau_{max}L}{Gr} = \frac{(\tau_{allowable})(200x10^{-3})}{(78x10^9)(\frac{8}{2}x10^{-3})} = .29 \, Rad \quad or \, (.29 \, Rad)(\frac{180^\circ}{\pi \, Rad}) = 16.6^\circ$$

e.g. 2

Given: Either a solid or a hollow steel shaft is to be manufactured, $T_{max} = 1200N * m$ $\tau_{allowable} = 40MPa$ Thickness of hollow shaft = .1 d₂

Find: $(d_0)_{min}, (d_2)_{min}$, and the ratio of material usage for the hollow shaft versus the solid shaft.

Since both shafts are the same density and length, the ratio of weights = the ratio of volumes = the ratio of areas:

$$\frac{A_{hollow}}{A_{solid}} = \frac{\pi/4 (d_2^2 - d_1^2)}{\pi/4 d_0^2} = .47$$

The hollow shaft has a larger diameter, but only uses 47% as much material as the solid shaft. Hollow shafts are more efficient.

$$\begin{array}{ll}
\frac{G_2}{2} & G_2 \\
\phi_1 = \frac{T_1 L_1}{G_1 I_{p1}} & \phi_2 = \frac{T_2 L_2}{G_1 I_{p1}} & \phi_3 = \frac{T_3 L_3}{G_2 I_{p2}} & \phi_4 = \frac{T_4 L_4}{G_2 I_{p2}} \\
\phi_{total} = \sum \phi
\end{array}$$

 T_1, T_2, T_3, T_4 are the internal torques within sections L_1, L_2, L_3, L_4 , respectively, which can be found from drawing free body diagrams as was done for the axial case in the previous section on Hooke's Law.

Deformation of tapered bars in torsion

Continuously varying torques/dimensions;

$$d\phi = \frac{T(x) d(x)}{GI_p(x)} \quad \phi = \int_0^L \frac{T(x)}{GI_p(x)} dx$$

note: satisfactory as long as angle of taper is less than 10°

- $I_{p}(x)$ determined from d(x), where d is the diameter
- note: A shaft in torsion has a normal stress. If $\sigma_{allowable}$ for a material is equal to, or less than $\tau_{allowable}$, then the design for the shaft in torsion is controlled by σ . And, it will fail along a 45° axis. (proof section on Mohr's Circle later in this chapter) (e.g. chalk)
- note: Similarly, a member under axial load has a shear stress. If $\tau_{allowable}$ for a material is equal to, or less than $\frac{1}{2}(\sigma_{allowable})$, then the design for the axially loaded member is controlled by τ . And, it will fail along a 45° axis. (proof-section on Mohr's Circle) (e.g. concrete)
- Gere, James M. <u>Mechanics of Materials: Sixth Edition</u>. Brooks/Cole. Belmont, CA 2004.

Lee, Vincent. Lecturer. University of Southern California. CE225. Spring 2005.