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Shear 
 
Shear deformation 

If a shear force  acts on the upper 
face, each side must have an equal 
shear force (in the directions shown) 
for equilibrium. 
 
The shear forces create a distortion 
as shown.   is called the shear strain 
(radians). 
 
Shear stress – strain diagrams appear 
similar to the axial diagram that was 
shown at the beginning of this 
chapter. 

 = G  
where G = Shear Modulus of 
Elasticity (material property) 

 = 
AG

V
, where A = shear area 

note:  G = 
)1(2

E


 (skipped proof) 

 
e.g. 
Given: “bearing pad” with dimensions shown, subjected to force shown. 
Find:   and d. 

 
 
 
 
 
 

)tan(tan
11 abG

V
hhd

abG

V

ab

V
   

 
 
 
 
 
 



 26

 
Shear stress in flexure 
 

From equilibrium of shear, the shear stress 
in the vertical direction is matched with an 
equal shear stress in the horizontal direction.  
And, from equilibrium of force in the x 
direction, 





A

y )dA](
I

y)dMM(
[]dx)y(t[*)(  


A

)dA](
I
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[  

The units match, since we have: 

)A](A
F[)A](A

F[]A[*)A
F(   

 
The area A is the area shaded, not the entire 
cross-sectional area. 
 


A

y ydA
)y(t*I

1

dx

dM
 

)y(t*I

VQy
y  (General Formula)    where Q = ”first moment” = 

A

ydA  

note:  In pure bending, V = 0, so 0 .  Also, M + dM = M in that case, so .0  

For rectangular cross-sect, t(y) = b (base) and )y
4

h
(

2

b
Q 2

2

y   

3

22

y bh2

)y4h(V3 
   (rect cross-sect) (skipped work)  

max occurs at y=0, which is the neutral axis. 

A2

V3
max   (rect cross-sect)  A=bh 

 
note:  Although   was calculated as being horizontal, there must be vertical shear that is 

equal, so maxV is determined from the SFD.  Area A is always the cross-sectional 

area. 
note:  Now it is possible to optimize the bending stress for a rect sect, although designers 

still usually use tables. 
 
e.g. 
Given:  Wood beam with rectangular cross-sect, is subjected to load shown.  

psi1800,psi200 allowallow    

Find:  Optimal beam size (assume beam weight already included in load q). 
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in*lb880,92
8

qL
M

2

max   

Supports: A = B = maxVlb2580
2

)12(430
  

1800 = 
2

3
allow bh

557280

)bh
12

1
(

)2
h(92880

I

My
         (1) 

200 = 
bh

3870

)bh(2

)2580(3

A2

V3
allow                      (2) 

2 eq, 2 unknowns; 
 

h=16”, b=1.21” ( 2
min in35.19bhA  ) 

note:  h>>b, as expected. 
note:  (compare to e.g. 1 of the “Bending stress design examples” section)  Even though 

an overly large allowance for the beam’s own weight was provided, and very small 
,allow  this beam was still about 2/3 the weight of the beam chosen in e.g. 1.  Of 

course, this is also largely due to the limited selection of available beams in the 
Appendix A. 

 
For circular cross-sect,   is complicated away from the neutral axis.  But, we can still 
find max which has been proven experimentally to be located at the neutral axis: 

t(0) = d (diameter) and 3
0 d

12

1
Q   

A3

V4
max   (solid shaft) (skipped work)  A = 2r  

)
rr

rrrr
(

A3

V4
2

1
2

2

2
112

2
2

max



    (hollow tube)  A = )rr( 2

1
2

2   

note:  Just like a rect sect, it is now possible to optimize a tubular section, although the 
use of a table is more practical.  Just make sure max after a size with appropriate 

section modulus has been chosen from the table. 
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Wide-flange cross section: 
 
Although the resultant forces are located in the xy plane, there are 
forces distributed all over the upper flange.  This creates a bending 
moment in the flange about the x axis and accompanying bending 
stresses and horizontal shear stresses.  The web has only vertical shear 
stresses which can easily be determined.  For the web, t(y) = t (web 

thickness) and yQ  = )y4h(
8

t
)hh(

8

b 22
1

2
1

2  , 

)thbhbh(
12

1
I 3

1
3

1
3  . 

- see next example for Q calculation of odd shape. 
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)]y4h(t)hh(b[V3
3

1
3

1
3

22
1

2
1

2

y



  (wide-flange beam)      

      (skipped work) 
 

max occurs at the neutral axis 

)thbhbh(t2

)thbhbh(V3
3

1
3

1
3

2
1

2
1

2

max



  

note:  a typical wide-flange beam design would be to design for allow  from a table, and 

then check allow . 

1
ave th

V
  and in this case is close to max (within 10% plus or minus), so ave is 

sometimes used in practice.  We will learn methods for calculating shear, which are more 
often used in practice, in later chapters on concrete design and steel design. 
 
note:  ave  was also used in the design of bolted connections in chapter 1. 

 
e.g. 
Given:  Location of neutral axis.  

lb000,10V,in65.69I max
4  . 

Find:  max  in web. 

First moment from  iiy dAQ  

iA  area a distance y  away from neutral axis. 

iii A(Afromcetandisd   neutral axis) to z.   

 
Choose y in web above neutral axis: 

 )]y955.47(
2

1
y)[y955.47(x1(Qy  

2y
2

1
3.12)]955.47(

2

1
)[4x1(   
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where )y955.47(x1   is the shaded area at the top of the web, and (1x4) is the flange 
area. 

 
OR 
 
Choose y in web below neutral axis:  

 )]y955.4(
2

1
y)][y955.4(x1[Qy  

     2y
2

1
3.12   

 as expected, where )]y955.4(x1[   is the shaded area at the bottom of the web. 

maxQ  occurs when y = 0.  Since t(y) is constant, max also occurs when y = 0 (a.k.a. the 

neutral axis z) 
 

ksi8.1
)1(65.69

)3.12(10000

tI

VQ
max     

note:  max  occurs at the neutral axis for almost any cross-section. 
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