Shear

Shear deformation

If a shear force τ acts on the upper face, each side must have an equal shear force (in the directions shown) for equilibrium.

The shear forces create a distortion as shown. γ is called the shear strain (radians).

Shear stress – strain diagrams appear similar to the axial diagram that was shown at the beginning of this chapter.

 $\tau = G\gamma$ where G = Shear Modulus of Elasticity (material property)

e.g.

Given: "bearing pad" with dimensions shown, subjected to force shown. Find: τ , γ , and d.

Shear stress in flexure

$$\tau_{\text{max}} = \frac{3V}{2A}$$
 (rect cross-sect) A=bh

- note: Although τ was calculated as being horizontal, there *must be* vertical shear that is equal, so V_{max} is determined from the SFD. Area A is always the cross-sectional area.
- note: Now it is possible to optimize the bending stress for a rect sect, although designers still usually use tables.

e.g.

- Given: Wood beam with rectangular cross-sect, is subjected to load shown. $\tau_{allow} = 200 \, psi, \, \sigma_{allow} = 1800 \, psi$
- *Find: Optimal beam size (assume beam weight already included in load q).*

From equilibrium of shear, the shear stress in the vertical direction is matched with an equal shear stress in the horizontal direction. And, from equilibrium of force in the x

$$(\tau_{y})^{*}[t(y)dx] = \int_{A} [\frac{(M+dM)y}{I}](dA)$$
$$- \int_{A} [\frac{My}{I}](dA)$$

The units match, since we have: $(F_A)*[A] = [F_A](A) - [F_A](A)$

The area A is the area shaded, not the entire cross-sectional area.

$$\tau_{y} = \frac{dM}{dx} \frac{1}{I * t(y)} \int_{A} y dA$$

$$h=16", b=1.21" (A_{min} = bh = 19.35in^2)$$

note: h >> b, as expected.

note: (compare to e.g. 1 of the "Bending stress design examples" section) Even though an overly large allowance for the beam's own weight was provided, and very small τ_{allow} , this beam was still about 2/3 the weight of the beam chosen in e.g. 1. Of course, this is also largely due to the limited selection of available beams in the Appendix A.

For circular cross-sect, τ is complicated away from the neutral axis. But, we can still find τ_{max} which has been proven experimentally to be located at the neutral axis:

t(0) = d (diameter) and
$$Q_0 = \frac{1}{12}d^3$$

 $\tau_{max} = \frac{4V}{3A}$ (solid shaft) (skipped work) $A = \pi r^2$
 $\tau_{max} = \frac{4V}{3A}(\frac{r_2^2 + r_2r_1 + r_1^2}{r_2^2 + r_1^2})$ (hollow tube) $A = \pi (r_2^2 - r_1^2)$

note: Just like a rect sect, it is now possible to optimize a tubular section, although the use of a table is more practical. Just make sure $\tau \le \tau_{max}$ after a size with appropriate section modulus has been chosen from the table.

Wide-flange cross section:

Although the *resultant* forces are located in the xy plane, there are forces distributed all over the upper flange. This creates a bending moment in the flange about the x axis and accompanying bending stresses and horizontal shear stresses. The web has only vertical shear stresses which can easily be determined. For the web, t(y) = t (web

thickness) and $Q_y = \frac{b}{8}(h^2 - h_1^2) + \frac{t}{8}(h_1^2 - 4y^2)$, $I = \frac{1}{12}(bh^3 - bh_1^3 + th_1^3)$.

cross-sect view

see next example for Q calculation of odd shape.

$$\tau_{y} = \frac{3V[b(h^{2} - h_{1}^{2}) + t(h_{1}^{2} - 4y^{2})]}{2t(bh^{3} - bh_{1}^{3} + th_{1}^{3})}$$
(wide-flange beam)
(skipped work)

 τ_{max} occurs at the neutral axis

$$\tau_{\max} = \frac{3V(bh^2 - bh_1^2 + th_1^2)}{2t(bh^3 - bh_1^3 + th_1^3)}$$

note: a typical wide-flange beam design would be to design for σ_{allow} from a table, and

then check $\tau \leq \tau_{allow}$.

$$\tau_{ave} = \frac{V}{th_1}$$
 and in this case is close to τ_{max} (within 10% plus or minus), so τ_{ave} is

sometimes used in practice. We will learn methods for calculating shear, which are more often used in practice, in later chapters on concrete design and steel design.

note: τ_{ave} was also used in the design of bolted connections in chapter 1.

where 1x(7-4.955-y) is the shaded area at the top of the web, and (1x4) is the flange area.

OR

Choose y in web <u>below</u> neutral axis: $Q_y = [1x(4.955 - y)][y + \frac{1}{2}(4.955 - y)] = 12.3 - \frac{1}{2}y^2$

as expected, where [1x(4.955 - y)] is the shaded area at the bottom of the web. Q_{max} occurs when y = 0. Since t(y) is constant, τ_{max} also occurs when y = 0 (a.k.a. the neutral axis z)

$$\tau_{max} = \frac{VQ}{It} = \frac{10000(12.3)}{69.65(1)} = 1.8ksi$$

note: τ_{max} occurs at the neutral axis for almost <u>any</u> cross-section.

Gere, James M. <u>Mechanics of Materials: Sixth Edition</u>. Brooks/Cole. Belmont, CA 2004.

Lee, Vincent. Lecturer. University of Southern California. CE225. Spring 2005.

APPENDIX

.

Appendix A

SECTION PROPERTIES FOR SAWN LUMBER AND TIMBER

	Standard	Area	X-X Axis		Y-Y Axis		+	1			
			Moment		Moment		Board	Weight in pounds per linear foot of piece whe			
Nominal	Size	of	of	Section	of	Section	Measure	we	ight of woo	d per cubic	foot equals:
Size	(\$4\$)	Section	Inertia	Modulus	Inertia	Modulus	per				1
bxh	b×h	A	1	S	I	S	Lineal	25	30	35	
in.	in.	in.*	in.4	in.3	in.4	in.3	Foot	pcf	pcf	pcf	
		1.055	0.077	0 781	0.089	0.984	ł	0.326	0.391	0.456	
1×3	1×21	1.875	0.977	1 591	0.000	0 898	ì	0.456	0.547	0.638	
1×4	4×3±	2.625	2.680	1.551	0.125	0.526	1	0.716	0.859	1.005	
1×6	1×51	4.125	10.398	3.781	0.195	0.510	1	0.044	1 133	1 822	
1×8	1×71	5.438	23.817	6.570	0.255	0.000	3	1.904	1 445	1 686	
1×10	1×91	6.938	49.466	10.695	0.325	0.807		1.204	1 759	9 051	
1 × 12	₹×11	8.438	88.989	15.820	0.396	1.055	1	1.400	1.756	2.051	
9 4 34	14 × 94	8.750	1.953	1.563	0.703	0.938	ł	0.651	0.781	0.911	
9 4	14 × 84	5.250	5.359	3.063	0.984	1.313	-	0.911	1.094	1.276	
0 . 68	11 × 51	8 250	20.797	7.563	1.547	2.063	1	1.432	1.719	2.005	
2 ~ 0	11 × 71	10.875	47.635	13.141	2.039	2.719	11	1.888	2.266	2.643	
9 108	11 × 04	18.875	98,932	21.391	2.602	3.469	18	2.409	2.891	3.372	
2 4 10-	11 - 111	16 875	177 979	31.641	3.164	4.219	2	2.930	3.516	4.102	
2 × 12-	11×13	19.875	290.775	43.891	3.727	4.969	23	3.451	4.141	4.831	
			0.000	E 104	4 557	8 646	1	1.519	1.823	2.127	2
3×4	21×31	8.750	8.932	5.104	4.00/	5.040	11	9 897	2.865	3.349	
3×6	21×51	13.750	34.661	12.604	7.161	5.729	9	8 147	8 776	4.405	
3×8	21×71	18.125	79.391	21.901	9.440	7.552	01	4.015	4 818	5 691	
3×10	21×91	23.125	164.886	35.651	12.044	9.635	41	4.015	5 950	6 836	
3×12	$2\frac{1}{2} \times 11\frac{1}{4}$	28.125	296.631	52.734	14.648	11.719	5	4.003	6.001	8 051	
3×14	21×131	33.125	484.625	73.151	17.253	13.802	21	5.751	7 048	0.966	
3×16	21×151	38.125	738.870	96.901	19.857	15.885	4	0.019	7.345	5.200	1
4×4	31×31	12.250	12.505	7.146	12.505	7.146	11	2.127	2.552	2.977	
4×6	31×51	19.250	48.526	17.646	19.651	11.229	2	3.34Z	4.010	6.169	
4×8	31×71	25.375	111.148	30.661	25.904	14.802	23	4.405	5.280	0.100	
4×10	31×91	32.375	230.840	49.911	33.049	18.885	35	5.621	6.745	1.809	
4×19	3+×11+	39.375	415.283	73.828	40.195	22.969	4	6.836	8.203	9.570	
4 × 14	84 × 184	46.375	678.475	102.411	47.340	27.052	43	8.047	9.657	11.200	
4×16	3t × 15t	53.375	1,034.418	135.661	54.487	31.135	51	9.267	11.121	12.975	1
			70 055	97 790	76 955	97 799	9	5.252	6.302	7.352	
6×6	51 × 51	30.250	10.255	£1.129	108 084	87 818	4	7.161	8.594	10.026	
6×8	5± × 7±	41.250	193.359	51.505	103.304	47 906	5	9.071	10.885	12,700	
6×10	51×91	52.250	392.963	82.729	151.714	47.090	6	10.081	18 177	15.373	
6×12	54×11	63.250	697.068	121.229	159.445	57.979	7	19 801	15 469	18.047	1
6×14	51×131	74.250	1,127.672	167.063	187.172	00.005		T4 800	17 760	20.720	
6×16	51×151	85.250	1,706.776	220.229	214.901	78.140	0	16 710	20.052	28 394	
6×18	51×171	96.250	2,456.380	280.729	242.630	88.229	9	10.710	99 844	26 068	
6×20	51×191	107.250	3,398.484	348.563	270.359	98.313	10	18.020	04 695	98 741	
6 × 22	51×211	118.250	4,555.086	423.729	298.088	108.396	11	20.530	24.035	91 415	
6×24	51 × 231	129.250	5,948.191	506.229	325.818	118.479	12	22.439	20.927	51.415	4
0 ~ 0	71 ~ 71	56 950	268 679	70.313	263,672	70.313	51	9.766	11.719	13.672	
0 4 0	71 ~ 01	71 950	585 850	119 818	333 984	89.063	6	12.370	14.844	17.318	1
8 × 10	71 4 91	06 050	050 547	165 919	404 907	107 818	8	14.974	17.969	20.964	
8×12	71×111	80.250	990.947	007 019	474 600	196 569	01	17.578	21.094	24.609	
8×14	71×131	101.250	1,537.734	227.013	544 000	149 919	102	20 189	24.219	28.255	1
8×16	71 × 151	116.250	2,327.422	900.010	615 094	164 069	19	99 786	27.944	31.901	1
8×18	$7 \pm \times 17 \pm$	131.250	3,349.609	382.813	015.234	104.005	191	95 901	30 460	35 547	
8 × 20	71×191	146.250	4,634.297	475.313	084.547	182.813	1.05	97 005	88 504	30 109	1
8 × 22	71×211	161.250	6,211.484	577.813	755.859	201.503	145	27.595	36 710	49 880	
8×24	$7\frac{1}{2} \times 23\frac{1}{2}$	176.250	8,111.172	690.313	826.172	220.313	10	20.599	50.719	74.009	+
10 × 10	01×01	90.250	678,755	142.896	678.755	142.896	81	15.668	18.802	21.936	
10 4 10	01 - 111	100 950	1 204 026	200 806	821 651	172.979	10	18.967	22.760	26.554	
10 × 12	01 - 191	199.450	1 047 707	989 569	964 547	203 063	114	22.266	26.719	31.172	
10 × 14	01 × 151	147 050	9 049 069	380 906	1 107 449	233.146	134	25.564	30.677	35.790	
10 × 16	91 × 151	147.250	4,940,000	404 000	1 950 899	963 990	15	28,863	34.635	40.408	
			4 747 830	1 404 04D	11.4:0.000	400.440	1 15			10000000000000000000000000000000000000	1.1