Principal stresses

Stresses are positive if positive face - positive direction or negative face - negative direction.
(All stresses shown are positive with respect to these axes)

$$
\begin{aligned}
& \cos \theta_{1}=\frac{A_{0}}{A_{2}} \Rightarrow A_{2}=A_{0} \sec \theta_{1} \\
& \tan \theta_{1}=\frac{A_{1}}{A_{0}} \Rightarrow A_{1}=A_{0} \tan \theta_{1}
\end{aligned}
$$

forces

From $\sum \mathrm{F}_{\mathrm{x}}=0$ and $\sum \mathrm{F}_{\mathrm{y}}=0$, $\sigma_{\mathrm{x} 1 \mathrm{x} 1}=\frac{\sigma_{\mathrm{xx}}+\sigma_{\mathrm{yy}}}{2}+\frac{\sigma_{\mathrm{xx}}-\sigma_{\mathrm{yy}}}{2} \cos 2 \theta_{1}+\tau_{\mathrm{xy}} \sin 2 \theta_{1}$
$\tau_{x 1 y 1}=\frac{-\left(\sigma_{x x}-\sigma_{y y}\right)}{2} \sin 2 \theta_{1}+\tau_{x y} \cos 2 \theta_{1}$
$\theta_{1} \varepsilon\left[0^{\circ}, 180^{\circ}\right]$
These are the "transformation equations" for plane stress. $\sigma_{\text {max }}$ and $\tau_{\text {max }}$ from these equations are the true maximum stresses in a beam (except for the special case where they occur out-of-plane). $\sigma_{\text {max }}$ and $\tau_{\text {max }}$ may occur at a location of $\left(\sigma_{x x}\right)_{\max },\left(\sigma_{y y}\right)_{\max },\left(\tau_{x y}\right)_{\max }$, or may occur at a location where none of the above are maximized.
note: $\sigma_{y y}$ for a given region in a beam is the distributed load q divided by the cross-sect thickness t at that location.
note: $\sigma_{y y}$ usually compressive (negative in the above equations) since our distributed loads act downward. $\sigma_{x x}$ direction determined from bending stress and external axial load $\left(\frac{\mathrm{P}}{\mathrm{A}}+\frac{\mathrm{My}}{\mathrm{I}}\right)$. τ direction determined from inspection of the internal vertical equilibrium (NOT SFD) (see below).

$\tau \quad$ reversed because location is to the right of the point load.
σ reversed because section chosen is in upper portion of beam.
note: The beams of chapter five usually contain all three forces. Since $\sigma_{y y}$ depends on x (distance along beam) and y (in relation to neutral axis), σ_{xx} depends on x and y , τ_{xy} depends on x and y , and θ_{1} also varies between 0 and 180°, finding the exact location and angle of $\sigma_{\max }$ and $\tau_{\max }$ can usually only be approached through trial and error using the transformation equations. For design, transformation equations are accounted for in the safety factor, but can be checked as follows.

Principal Angles

The following is useful assuming that a location O within a beam has been chosen and $\tau_{\mathrm{xy}}, \sigma_{\mathrm{xx}}, \sigma_{\mathrm{yy}}$ are known.
From $\frac{\mathrm{d} \sigma_{\mathrm{x} 1 \mathrm{x} 1}}{\mathrm{~d} \theta_{1}}=0, \quad \boldsymbol{\operatorname { t a n }} 2\left(\theta_{\mathrm{p}}\right)=\frac{2 \tau_{\mathrm{xy}}}{\sigma_{\mathrm{xx}}-\sigma_{\mathrm{yy}}}$ (critical angles for normal - "principal stress")
Two solutions: $\theta_{\mathrm{p}} \varepsilon\left[0,90^{\circ}\right]$ and $\theta_{\mathrm{p}} \varepsilon\left[90,180^{\circ}\right]$ which correspond to $\theta_{\mathrm{p} 1}$ and $\theta_{\mathrm{p} 2}$ though not necessarily in that order. $\theta_{\mathrm{p} 1}$ and $\theta_{\mathrm{p} 2}$ differ by 90°.
$\sigma_{\mathrm{xp} 1 \mathrm{xp1} 1}=\left(\sigma_{\mathrm{x} 1 \mathrm{x} 1}\right)_{\max }=\frac{\sigma_{\mathrm{xx}}+\sigma_{\mathrm{yy}}}{2}+\sqrt{\left(\frac{\sigma_{\mathrm{xx}}-\sigma_{\mathrm{yy}}}{2}\right)^{2}+\tau_{\mathrm{xy}}^{2}}$ (skipped work)
$\sigma_{\mathrm{xp} 2 \mathrm{xp} 2}=\left(\sigma_{\mathrm{x} 1 \mathrm{x} 1}\right)_{\min }=\frac{\sigma_{\mathrm{xx}}+\sigma_{\mathrm{yy}}}{2}-\sqrt{\left(\frac{\sigma_{\mathrm{xx}}-\sigma_{\mathrm{yy}}}{2}\right)^{2}+\tau_{\mathrm{xy}}{ }^{2}}$
(could be greater magnitude than $\left.\left(\sigma_{x 1 x 1}\right)_{\text {"max" }}\right)$
note: $\tau_{\text {xp1xp1 }}=\tau_{\text {xp2xp } 2}=0$ (proof Mohr's Circle - see next section)
note: The true min and max normal stress could be located "out-of-plane" (not calculated)

From $\frac{d \tau_{x y 1}}{d \theta_{1}}=0, \boldsymbol{\operatorname { t a n }} 2\left(\theta_{\mathrm{s}}\right)=\frac{-\left(\sigma_{\mathrm{xx}}-\sigma_{\mathrm{yy}}\right)}{2 \tau_{\mathrm{xy}}}$ (critical angles for shear stress)
Two solutions: $\theta_{\mathrm{s}} \varepsilon\left[0,90^{\circ}\right]$ and $\theta_{\mathrm{s}} \varepsilon\left[90,180^{\circ}\right]$ which correspond to $\theta_{\mathrm{s} 1}$ and $\theta_{\mathrm{s} 2}$ though not necessarily in that order. $\theta_{\mathrm{s} 1}$ and $\theta_{\mathrm{s} 2}$ differ by 90°.

$$
\begin{aligned}
& \tau_{\mathrm{xs} 1 \mathrm{ys} 1}=\left(\tau_{\mathrm{x} 1 \mathrm{y} 1}\right)_{\max }=\sqrt{\left(\frac{\sigma_{\mathrm{xx}}-\sigma_{\mathrm{yy}}}{2}\right)^{2}+\tau_{\mathrm{xy}}{ }^{2}} \quad \text { OR } \quad \frac{\sigma_{\mathrm{xp} 1 \mathrm{xp} 1}-\sigma_{\mathrm{xp} 2 \mathrm{xp} 2}}{2} \\
& \tau_{\mathrm{xs} 2 \mathrm{ys} 2}=\left(\tau_{\mathrm{x} 1 \mathrm{y} 1}\right)_{\min }=-\left(\tau_{\mathrm{x} 1 \mathrm{y} 1}\right)_{\max }
\end{aligned}
$$

note: $\sigma_{\text {ave }}=\frac{\sigma_{x x}+\sigma_{y y}}{2}=\sigma_{x s 1 x s 1}=\sigma_{x s 2 x s 2}$ (Proof Mohr's Circle - see next section) note: $\theta_{\mathrm{s} 1}=\theta_{\mathrm{p} 1}-45^{\circ}$ (Proof Mohr's Circle)
note: The true min and max shear stress is located out-of-plane if $\sigma_{\mathrm{xp1xp1} 1}$ and $\sigma_{\mathrm{xp} 2 \times p 2}$ have the same sign: $\left[\left(\tau_{\max / \min }\right)_{\text {about xp1 }}= \pm \frac{\sigma_{\mathrm{xp} 2 \times \mathrm{p} 2}}{2}\right.$ and $\left.\left(\tau_{\max / \min }\right)_{\text {about xp} 2}= \pm \frac{\sigma_{\mathrm{xplxp} 1}}{2}\right]$.
e.g.

Given: $\quad \sigma_{x x}=12300 p s i \quad \sigma_{y y}=-4200 p s i \quad \tau_{x y}=-4700 p s i$
Find: $\sigma_{x p 1 x p 1}, \sigma_{x p 2 x p 2}, \tau_{x s 1 y s 1}, \tau_{x s 2 y s 2}$

note: $\theta_{s 1}=\theta_{p 1}-45^{\circ}=165.2^{\circ}-45^{\circ}=120.2^{\circ}$
note: $\tau_{x s 1 y s 1}=-\tau_{x s 2 y s 2}=\frac{\sigma_{x p 1 x p 1}-\sigma_{x p 2 x p 2}}{2}=\frac{13540-(-5440)}{2}=9490$
note: $\tau_{x p 1 y p 1}=\tau_{x p 2 y p 2}=0$ and $\sigma_{x s 1 x s 1}=\sigma_{x s 2 x s 2}=\sigma_{\text {ave }}$ could also be shown easily

