Principal stresses

Stresses are positive if <u>positive</u> face - <u>positive</u> direction or <u>negative</u> face - <u>negative</u> direction.

(All stresses shown are positive with respect to these axes)

$$\cos \theta_1 = \frac{A_0}{A_2} \Longrightarrow A_2 = A_0 \sec \theta_1$$
$$\tan \theta_1 = \frac{A_1}{A_2} \Longrightarrow A_1 = A_0 \tan \theta_1$$

From
$$\sum F_x = 0$$
 and $\sum F_y = 0$,
 $\sigma_{x1x1} = \frac{\sigma_{xx} + \sigma_{yy}}{2} + \frac{\sigma_{xx} - \sigma_{yy}}{2} \cos 2\theta_1 + \tau_{xy} \sin 2\theta_1$
 $\tau_{x1y1} = \frac{-(\sigma_{xx} - \sigma_{yy})}{2} \sin 2\theta_1 + \tau_{xy} \cos 2\theta_1$
 $\theta_1 \in [0^\circ, 180^\circ]$

These are the "transformation equations" for plane stress. σ_{max} and τ_{max} from these equations are the <u>true</u> maximum stresses in a beam (except for the special case where they occur out-of-plane). σ_{max} and τ_{max} may occur at a location of $(\sigma_{xx})_{max}$, $(\sigma_{yy})_{max}$, $(\tau_{xy})_{max}$, or may occur at a location where none of the above are maximized.

- note: σ_{yy} for a given region in a beam is the distributed load q divided by the cross-sect thickness t at that location.
- note: σ_{yy} usually compressive (negative in the above equations) since our distributed loads act downward. σ_{xx} direction determined from bending stress and external axial load $(\frac{P}{A} + \frac{My}{I})$. τ direction determined from inspection of the internal vertical equilibrium (NOT SFD) (see below).

note: The beams of chapter five usually contain all three forces. Since σ_{yy} depends on x (distance along beam) and y (in relation to neutral axis), σ_{xx} depends on x and y, τ_{xy} depends on x and y, and θ_1 also varies between 0 and 180°, finding the exact location and angle of σ_{max} and τ_{max} can usually only be approached through trial and error using the transformation equations. For design, transformation equations are accounted for in the safety factor, but can be checked as follows.

Principal Angles

The following is useful assuming that a location O within a beam has been chosen and τ_{xy} , σ_{xx} , σ_{yy} are known.

From $\frac{d\sigma_{x1x1}}{d\theta_1} = 0$, $\tan 2(\theta_p) = \frac{2\tau_{xy}}{\sigma_{xx} - \sigma_{yy}}$ (critical angles for normal – "principal stress") Two solutions: $\theta_p \in [0, 90^\circ]$ and $\theta_p \in [90, 180^\circ]$ which correspond to θ_{p1} and θ_{p2} though not necessarily in that order. θ_{p1} and θ_{p2} differ by 90°.

$$\sigma_{xp1xp1} = (\sigma_{x1x1})_{max} = \frac{\sigma_{xx} + \sigma_{yy}}{2} + \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \tau_{xy}^2} \text{ (skipped work)}$$

$$\sigma_{xp2xp2} = (\sigma_{x1x1})_{min} = \frac{\sigma_{xx} + \sigma_{yy}}{2} - \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \tau_{xy}^2}$$

(could be greater <u>magnitude</u> than $(\sigma_{x1x1})_{max}$)

note: $\tau_{xp1xp1} = \tau_{xp2xp2} = 0$ (proof Mohr's Circle – see next section) note: The true min and max normal stress <u>could</u> be located "out-of-plane" (not calculated) From $\frac{d\tau_{x1y1}}{d\theta_1} = 0$, $\tan 2(\theta_s) = \frac{-(\sigma_{xx} - \sigma_{yy})}{2\tau_{xy}}$ (critical angles for shear stress)

Two solutions: $\theta_s \epsilon [0, 90^\circ]$ and $\theta_s \epsilon [90, 180^\circ]$ which correspond to θ_{s1} and θ_{s2} though not necessarily in that order. θ_{s1} and θ_{s2} differ by 90°.

$$\tau_{xs1ys1} = (\tau_{x1y1})_{max} = \sqrt{(\frac{\sigma_{xx} - \sigma_{yy}}{2})^2 + \tau_{xy}^2} \quad OR \quad \frac{\sigma_{xp1xp1} - \sigma_{xp2xp2}}{2}$$

$$\tau_{xs2ys2} = (\tau_{x1y1})_{min} = -(\tau_{x1y1})_{max}$$

note: $\sigma_{ave} = \frac{\sigma_{xx} + \sigma_{yy}}{2} = \sigma_{xs_1xs_1} = \sigma_{xs_2xs_2}$ (Proof Mohr's Circle – see next section) note: $\theta_{s1} = \theta_{p1} - 45^\circ$ (Proof Mohr's Circle) note: The true min and max shear stress is located out-of-plane if $\sigma_{xp_1xp_1}$ and $\sigma_{xp_2xp_2}$ have

the same sign:
$$[(\tau_{\text{max/min}})_{\text{about xp1}} = \pm \frac{\sigma_{\text{xp2xp2}}}{2} \text{ and } (\tau_{\text{max/min}})_{\text{about xp2}} = \pm \frac{\sigma_{\text{xp1xp1}}}{2}].$$

e.g. Given: $\sigma_{xx} = 12300 \, psi$ $\sigma_{yy} = -4200 \, psi$ $\tau_{xy} = -4700 \, psi$ Find: $\sigma_{xp1xp1}, \sigma_{xp2xp2}, \tau_{xs1ys1}, \tau_{xs2ys2}$

in terms of x_{s_1}, x_{s_2}

check:
$$\pm \sqrt{(\frac{\sigma_{xx} - \sigma_{yy}}{2})^2 + \tau_{xy}^2} = \pm 9490$$

note:
$$\theta_{s1} = \theta_{p1} - 45^\circ = 165.2^\circ - 45^\circ = 120.2^\circ$$

note: $\tau_{xs1ys1} = -\tau_{xs2ys2} = \frac{\sigma_{xp1xp1} - \sigma_{xp2xp2}}{2} = \frac{13540 - (-5440)}{2} = 9490$
note: $\tau_{xp1yp1} = \tau_{xp2yp2} = 0$ and $\sigma_{xs1xs1} = \sigma_{xs2xs2} = \sigma_{ave}$ could also be shown easily