Poisson's Ratio

Lateral strain $=\frac{\text { change in lateral length }}{\text { initial lateral length }}=\varepsilon^{\prime}$ (no units)

$$
\begin{array}{ll}
\varepsilon^{\prime}=v \varepsilon & \text { where } v=\text { Poisson's ratio (material property) and recall the definition of } \varepsilon \\
\text { from the beginning of this chapter }
\end{array}
$$

(change in lateral length)=-(initial lateral length)(v)(ε)
note: only applies to isotropic materials (same elastic properties in axial, lateral, or any direction). Concrete and most metals are isotropic. Wood is an example of an anisotropic (non-isotropic) material (it is much tougher against the grain).
e.g.

Given: Hollow polymer pipe of length 4 ft , outside diameter $d_{2}=6$ in., inside diameter $d_{1}=4.5$ in., is compressed by 140 kip normal force. $E=3000$ ksi, $v=.3$
Find: Increase in wall thickness Δt.

$$
\begin{aligned}
& \Delta d_{1}=d_{1} v\left(\frac{P}{A E}\right)=4.5(.3)\left(\frac{140}{\pi / 4\left(6^{2}-4.5^{2}\right)(3000)}\right)=.00509 \mathrm{in} \\
& \Delta d_{2}=d_{2} v\left(\frac{P}{A E}\right)=6(.3)\left(\frac{140}{\pi / 4\left(6^{2}-4.5^{2}\right)(3000)}\right)=.00679 \mathrm{in} \\
& \Delta t=\Delta r_{2}-\Delta r_{1}=\frac{\Delta d_{2}-\Delta d_{1}}{2}=.00085 \mathrm{in}
\end{aligned}
$$

note: under compression, outer diameter, inner diameter, and thickness all increase.
note: follow the same process for the lateral elongation (or shortening) for each dimension of a rectangular bar.

