Mohr's Circle

$\sigma_{\mathrm{x} 1 \times 1}=\frac{\sigma_{\mathrm{xx}}+\sigma_{\mathrm{y} y}}{2}+\frac{\sigma_{\mathrm{xx}}-\sigma_{\mathrm{yy}}}{2} \cos 2 \theta_{1}+\tau_{\mathrm{xy}} \sin 2 \theta_{1}$
and
$\tau_{x y y 1}=\frac{-\left(\sigma_{x x}-\sigma_{y y}\right)}{2} \sin 2 \theta_{1}+\tau_{x y} \cos 2 \theta_{1}$
are the parametric equations of a circle.
Manipulation: Bring $\frac{\sigma_{\mathrm{xx}}+\sigma_{\mathrm{yy}}}{2}$ to the left side of the top equation, square both sides of the equation, and then add the two equations;
$\left(\sigma_{\mathrm{x} 1 \mathrm{x} 1}-\sigma_{\mathrm{ave}}\right)^{2}+\tau_{\mathrm{x} 1 \mathrm{y} 1}{ }^{2}=\mathrm{R}^{2} \Rightarrow \mathrm{R}=\sqrt{\left(\frac{\sigma_{\mathrm{xx}}-\sigma_{\mathrm{yy}}}{2}\right)^{2}+\tau_{\mathrm{xy}}{ }^{2}}$ is the algebraic equation of a circle.

Knowing $\sigma_{x x}, \sigma_{y y}, \tau_{x y}$:

- we can now find $\tau_{x 1 y 1}$ directly from $\sigma_{x 1 x 1}$ without knowing θ (and vice-versa).
- we can construct the circle with an accurate scale and immediately see all values of $\tau_{x 1 y 1}$ and $\sigma_{x 1 x 1}$ and their corresponding θ_{1} (by measuring $2 \theta_{1}$ with a protractor).

note: $\quad \tau_{x 1 y 1}$ is positive downward, and $\theta=0^{\circ}$ does NOT
netessarily start at the $\sigma_{x 1 \times 1}$ axis.
note: @ P_{1} and $\mathrm{P}_{2}, \tau=0$
@ S_{1} and $\mathrm{S}_{2}, \sigma=\sigma_{\text {ave }}$
$\theta_{\mathrm{s} 1}=\theta_{\mathrm{p} 1}-45^{\circ}$, all as expected.
Also,

$$
\left(\tau_{x 1 y 1}\right)_{\max }=\text { radius }=\frac{\text { diameter }}{2}=\frac{\left(\sigma_{x 1 x 1}\right)_{\max }-\left(\sigma_{x 1 \times 1}\right)_{\min }}{2}
$$

Procedure for drawing Mohr’s Circle;
First, draw axes.
Second, the center of the circle corresponds to ($\sigma_{\text {ave }}, 0$).

- A straight line through the center connecting ($\sigma_{x x}, \tau_{x y}$) and ($\sigma_{y y},-\tau_{x y}$) is the circle's diameter. (2R also $=$ diameter $)$
- $\theta=0$ corresponds to ($\sigma_{x x}, \tau_{x y}$), $2 \theta=180$ corresponds to ($\sigma_{y y},-\tau_{x y}$)
- Draw the circle
- Find τ and σ values of interest directly from circle (if drawn with accurate scale), or from transformation equations, or using trig.

If we know the stresses $\sigma_{x 1 x 1}, \sigma_{y 1 y 1}$, and $\tau_{x 1 y 1}$, at a known angle θ_{1}, we can construct the circle first in terms of these stresses and then move clockwise $2 \theta_{1}$ for $\sigma_{x x}, \sigma_{y y}$, and $\tau_{x y}$.
e.g.

Given: $\sigma_{x x}=12300$ psi $\quad \sigma_{y y}=-4200 \mathrm{psi} \quad \tau_{x y}=-4700 \mathrm{psi}$
Find: $\theta_{p 1}, \theta_{p 2}, \theta_{s 1}, \theta_{s 2}, \sigma_{x p 1 x p 1}, \sigma_{x p 2 x p 2}, \tau_{x s 1 y s 1}, \tau_{x s 2 y s 2} \quad$ AND stresses at $\theta_{1}=45^{\circ}$

$\sigma_{\text {ave }}=\frac{12300+(-4200)}{2}=4050$
$R=\sqrt{\left(\frac{12300-(-4200)}{2}\right)^{2}+(-4700)^{2}}=9490$

$12300-4050=8250$

$$
\sigma_{x p 2 x p 2}=\sigma_{\text {ave }}-R=-5440 p s i
$$

$$
\begin{aligned}
& 2 \theta_{p 1}=360-29.7=330.3^{\circ} \quad \theta_{p 1}=165.2^{\circ} \\
& \sigma_{x p 1 x p 1}=\sigma_{a v e}+R=13540 \text { psi } \\
& 2 \theta_{s 2}=90-29.7=60.3^{\circ} \quad \theta_{s 2}=30.2^{\circ} \\
& \tau_{x s 2 y s 2}=-R=-9490 \text { psi } \\
& 2 \theta_{s 1}=270-29.7=240.3^{\circ} \quad \theta_{s 1}=120.2^{\circ} \\
& \tau_{x s 1 y s 1}=R=\mathbf{9 4 9 0} \mathbf{~ p s i}
\end{aligned}
$$

Gere, James M. Mechanics of Materials: Sixth Edition. Brooks/Cole. Belmont, CA 2004.

Lee, Vincent. Lecturer. University of Southern California. CE225. Spring 2005.

