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Beam deflections and rotations 
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Substitute BMD function(s) for M, and 
integrate. 
 
 

 EIEIEI'EIM''EIV'''EIq''''EI  
 
q, V, M should be non-zero constant, or functions of x  
(If non-prismatic beam, then I also depends on x) 
 
note:  small deflections only 
 
Solving the second-order bending moment equation ,M''EI  yields two constants of 
integration (for each segment of a beam).   We need two sets of initial conditions (for 
each segment).  There are always enough to choose from, if the system is statically 
determinate: 

 
Simply-supported beam shown: 
 

- boundary conditions: 
 0)A(   

 0)B(   
 
 

- continuity conditions: 
 )C()C(    

 )C(')C('    
- symmetry conditions: 

none 
 

Cantilevered beam shown: 
 

- boundary conditions: 
 0)A(   

 0)A('   
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- continuity conditions: 
 )C()C(    

 )C(')C('    
- symmetry conditions: 

none 
 
e.g. 1 
Find:  Deflection curve .,, maxmax   
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boundary condition:  0)0(or0)L(    
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e.g. 2 
Find:  max2121 ,,,Lxa,ax0     
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   43 CCtermscancelling   

boundary condition:  0)0(1   
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For a > b, max  obviously )a,0(  . 
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note:  The special case method for finding intmidpo  in the flexure derivation can still be 

used. 
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note:  Starting with the bending moment equation always works. 
 
 
Superposition 
 
For beams with common uniform loads AND point loads, where )x(and)x(  can be 
looked up in a table for the cases where each type of loading is acting alone, 

  totaltotal and .  Values can be found at specific points, or general (in terms 

of x) formulas can be found.   
Superposition can provide a useful shortcut for unusual loads too.  But for these loads, it 
is usually NOT possible to obtain a general formula )x(and)x(  for the whole beam 
because point load formulas (which are different for the left side of the load versus the 
right side) must be summed, and the shortcut involves an infinite number of point loads. 
(see next example). 
 
e.g. 
Find:  c  

 
Method 1:  find M(x) and solve "EI  
Method 2:  find )x(q  and solve ]C,A[''''EI   
Method 3:  point load midpoint deflection formula (tabulated in the appendix of many 

textbooks):  ab)a4L3(
EI48

Pa 22   (note:  this equation 

works for all points under the load, i.e. between A and C) 
 For an arbitrary point under the triangular load, the force P 

= qdx = dx
L

xq2 0  and the distance “a” is “x”.  The 

deflection at C is the sum of the deflections caused by each 
infinitesimal force. 
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Method 4:  point load deflection formula for Lxa   
from a previous example: 
 
“a” is “z” and “b” is “L-z” 

EI6

)ax(P
)xbL(

LEI6

Pbx 3
222 



 

dz
L

zq2
qdxP 0  



 44

)x)zL(L(
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note:  If the triangular load starts at a distance “k” away from A, then the lower limit of 

integration would be k. 
 
note:  There is no easy way to obtain a general formula for the beam, which includes 

]C,A[)x(  , because under the triangular load, the location of   is to the left of 
some of the “point loads” and to the right of others (two separate formulas). 

 
Moment-Area Method  

 
Just like load equations, this method is particularly useful 
for cantilevered beams. 
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( 1x  with respect to B as shown) 
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note:  Although it may not be obvious, the  assumptions made here are the same as 
 dxds  and tan . 


B

A
A

B dtt  


B

A

1
AB EI

Mdxx
tt  (cantilevered beam) 

If A = fixed end, then BBt  , 0)xx(t AABA   (cantilevered) 
 
 
Note:  For simply supported beams, since the concavity is reversed compared to 

cantilevered beams,   is oriented differently, and t is on the opposite side of the 
deflection curve from  .  (see second e.x.) 

 
 
e.g. 1 
Find:  B  
 

Method 1:  find M(x) and solve EI "  
Method 2:  find –q(x) and try to solve EI ]B,C[''''   
Method 3:  point load end point deflection formula and 
 superposition 
Method 4:  point load deflection formula for cantilevered beam 

     for Lxa   and superposition 
 

Method 5:  use area under 
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e.g. 2 
Find:  D  

 
 

rd'ds   

1xranddt'ds   
Just as in the derivation for the cantilevered beam. 
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From similar triangles, 
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note:  In either of these last two examples, a general formula for   would have been 
possible using the moment-area method. 
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