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Bending 
The following derivation will assume “pure 
bending” (bending moment is constant/shear force 
V = 0) and prismatic material.  Longitudinal lines 
in the lower part of the beam are elongated (T) 
while those in the upper part are shortened ( C).  
Somewhere between the top and bottom of the 
beam is a longitudinal surface in which there is no 

length change.  This surface is the neutral surface.  It passes through the centroid of the 
cross-sectional area, assuming that the cross sectional area is symmetrical about the xy 
plane and load resultants act in this plane. 

 
curvatureofradius  

curvature = 



1

 

If the flexure is small,   is large and  is small. 




d)2(
2

ds
 where 

2

ds
 is the fraction of arc 

length change, and 2  radians = 360°. 

So, 
ds

d
dsd


   we deal with very small 

flexure, so 
dx

d
   ( radiansin ) 

Now we’re ready to find stress, strain, curvature, 
and deflection, in terms of bending moment. 

Deflection (at midpoint) = )
2

d
cos(


  

)
2

L
cos(

Lds
d








  

An arbitrary line ef above the x axis will shorten.  
Its original length = dx and its final length = 

dx
y

dx)
dx

)(y(d)y(





  

longitudinal strain = 
lengthoriginal

changelengthlongit
 

=




 y

dx

dx)dxydx(
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y





  

yE
yE

E 



  

Need to find a relationship between 
:Mandor   
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M =   
A A

2

A

dAyEdAy)area)(dist)(
area

force
(   If area moment of inertia = I = 


A

2dAy , then 
EI

M
    )

EI2

ML
cos(

M

EI

M

EI
    y

EI

M
   note:  I pI  

I

My
y)

EI

M
(E   maximum tensile and compressive bending stresses occur at points 

located farthest from the neutral axis. 

I

Mc
)(

I

Mc
)( 2

max2
1

max1 


  

 
For positive M, 1  is compressive, 2  is tensile.  For negative M, 1  is tensile, 2  is 

compressive.  So, there are up to four strength conditions to check to determine max  for 

a given prismatic beam. 
- see next example for center of mass and I calculation of an odd shape. 

Rectangular cross-sect:  
12

bh
I

3

  

Circular cross-sect:  
64

d
I

4
  

 
 
The “wide-flange” shape to the left approaches the ideal cross-
sect shape for a beam of given area and height.  The narrowness 
of the web is limited only by the shear stress. 
 
 
 

 
note:  small deflections only 
note:  these equations apply for cantilevered beams too 
note:  bending stress is NOT significantly altered by the presence of shear stresses, so 

I

My
  can be used for non-uniform bending with .yieldingM maxmax   
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e.g. 1 
Given:  Beam with uniform cross-section shown and uniform load. 

Find:  ( maxtmaxc )(and)  . 

 
Neutral axis from equivalent moments: 

If  )y074)(.012)(.3(.then,cy 2  

)034.y)(012)(.068(.2   where (.3)(.012) is 1A  and 

2(.068)(.012) is 2A2 . 

m06152.y   

m0185.m06152.08.candm06152.c 12   

General formula:  




 

i

ii'z

A

dA

A

M
y  

'z  can be ANY parallel 
axis.  id dist from iA  ( iA neutral axis ) to 'z .  

y dist from z’ to z. 

]dA)I[(I 2
iiiziz   where ii zfromdistd   to z 

(see pic to the left) 

( 3
1z1 )012)(.3(.

12

1
)I   

( 723
z1 10x04.6)06152.074)(.012)(.3(.)012)(.3(.

12

1
)I   

( 723
z3z2 10x32.9)034.06152)(.012)(.068(.)068)(.012(.

12

1
)I()I   

4677
z m10x47.2)10x32.9(2)10x04.6(II     

note:  the above formulas assume symmetry about y.  zI  formula also assumes symmetry 

about z.  – i.e. 1A  is symmetrical about 321 AandAandz  are symmetrical about 

.z2  
 

Between AB:  MPa2.15
10x47.2

)0185)(.10x025.2(
)(

6

3

max1    ( C) 

  MPa4.50
10x47.2

)06152)(.10x025.2(
)(

6

3

max2    (T) 

Between BC:  MPa0.27
10x47.2

)0185)(.10x6.3(
)(

6

3

max1    (T) 

  MPa7.89
10x47.2

)06152)(.10x6.3(
)(

6

3

max2   ( C) 

  maxc )(  89.7 Mpa   maxt )(  50.4 MPa 
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e.g. 2 
Given:  Beam cross section. 
Find:  I,c,c 21  

choose z’ at bottom ( 2cy  ): 





i

ii

A

dA
y  

2

2

)120(4)200)(300(

)200]()120(4)200)(200[()50)(100)(200(








 

= 138.39mm 
where (200)(100) is the area of the lower third and 

2)120(4)200)(200(   is the area of the upper two-

thirds.   
 
note: The upper two-thirds has height of 200mm. 
Looking at the dimensions on the figure, we can see 
that there is a height of 40mm above and 40mm below 
the cut-out circle within this upper two-thirds block.  

This symmetry explains why the last term in the numerator, id , is 200 (goes from z’ to the 

midpoint of the circle).  
 
OR 
 

mm39.138
)120(4)200)(300(

)200()120(4)150)(200)(300(
y

2

2










 

where (300)(200) is the area of the solid rectangle and 2)120(4
 is the area of the 

circle. 
23

zrect )61.11)(200)(300()300)(200(
12

1
)I(   

224
zcirc )61.61()120(4)120(

64
)I( 

  

48
zcirczrectz mm10x908.4)I()I(I   

 
 
Bending stress design examples 
 
Bending stress is not related to area and depends on more than one dimension (usually).  
It turns out, not surprisingly, that for a rectangular section in bending,  has0A  
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.0band    This is not surprising since we know that sections such as the wide-flange 
section, with the majority of material away from the neutral axis, are most cost effective.  
Design is best done using tables of common sections. 

Often 
21 c

I
and

c

I
 are written as ,SandS 21  where S = “section modulus.”  This simplifies 

the use of tables. 
 
e.g. 1 
Given:  Wood beam with rectangular cross-sect, is subjected to the load shown.  density 

= 35 
3ft

lb
  psi1800allow  . 

Find:  Suitable size beam (base x height) from appendix A. 
 
Simply supported beam (pin + roller), uniform load. 


8

)ft
in12()ft12)(ft

lb420(

8

qL
M

2
2

max   

=90,720 lb*in   (located at midpoint, skipped work) 

3max
allow in40.50

1800

720,90
S

S

M
  

 
 

From Appendix A, choose the lightest (smallest cross-sect area) beam that has a 
section modulus S of at least 50.40choose 3”x12”.  (3”x12” nominal 
dimensions, 2.5”x11.25” actual dimensions, s=52.73 )in3  But we still have to 
include the beam’s own weight: 

Beam weight = (area)(density)= ft
lb8.6)

ft
lb35)(

ft
in12

in25.11
x

ft
in12

in5.2
( 3   

33

2

in22.51)
420

8.426
)(40.50(Sorin22.51

1800
8

)12()12)(8.6(
720,90

S 


  

This is still smaller than the section modulus for the 3 x 12 in. beam, so that size is 
satisfactory. 
 
note:  If ,cc 21   then the problem is more complicated, but still follows the same basic 

process. 
note:  We have ignored the phenomenon known as “lateral torsional buckling”, which 

will be emphasized in the outline on steel design later on.   
 
e.g. 2 
Given:  beam supports the two-wheeled vehicle shown. 

It may occupy any position on the beam.  ksi4.21allow   
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Find:  maxM  and the corresponding S min . 

 
In terms of arbitrary distance z from the left: 
Support reactions: 

  0)60z(3)z(3)288(B:M A  

kip
288

180z6
B


  

+ kip
288

z61548
A06

288

180z6
A:Fy 




  

0)0(M)0(V:0x    

0)0(M
288

z61548
)0(V:0x 


   

x
288

z61548
dx

288

z61548
)x(M

288

z61548
)x(V:zx0

x

0









   

z
288

z61548
)z(M

288

z61548
)z(V:zx





   

z
288

z61548
)z(M3

288

z61548
)z(V:zx





   

 








 
x

z

dx3
288

z61548
z

288

z61548
)x(M3

288

z61548
)x(V:)60z(xz  

z3)z114)(x(
48

1
  

 

]60288,0[zz3)z114)(60z(
48

1
)60z(MM max    

in*kip7.346M,in99z maxmax     3
min in2.16

4.21

7.346
S   

 
note:  could then use a table to choose an efficient beam size. 
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Tapered beams 
 
To really minimize the amount of material, the cross-sect dimensions can be varied so as 
to develop the maximum allowable bending stress at every section. 
 
e.g. 
Given:  cantilevered beam with point load shown. 
Find:  xh so that allow   at every cross-section. 

 


2

x
3

x

x
x

allow
bh

Px6

)bh
12

1
(

)
2

h
(M


allow

x b

Px6
h


  

note:  If ,cc 21   then the problem gets a bit  more 
 complicated. 
note:  angle of taper must not be too large. 
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