Bending

The following derivation will assume "pure bending" (bending moment is constant/shear force $\mathrm{V}=0$) and prismatic material. Longitudinal lines in the lower part of the beam are elongated (T) while those in the upper part are shortened (C). Somewhere between the top and bottom of the beam is a longitudinal surface in which there is no length change. This surface is the neutral surface. It passes through the centroid of the cross-sectional area, assuming that the cross sectional area is symmetrical about the xy plane and load resultants act in this plane.

note: for negative bending moment, the arrows are reversed (compression on bottom, tension on top)

$\rho=$ radius of curvature
curvature $=\kappa=\frac{1}{\rho}$
If the flexure is small, ρ is large and κ is small.
$\frac{\mathrm{ds}}{2 \pi \rho}(2 \pi)=\mathrm{d} \theta$ where $\frac{\mathrm{ds}}{2 \pi \rho}$ is the fraction of arc length change, and 2π radians $=360^{\circ}$.
So, $\rho \mathrm{d} \theta=\mathrm{ds} \quad \kappa=\frac{\mathrm{d} \theta}{\mathrm{ds}}$ we deal with very small
flexure, so $\kappa \approx \frac{\mathrm{d} \theta}{\mathrm{dx}}$ (θ in radians)
Now we're ready to find stress, strain, curvature, and deflection, in terms of bending moment.
Deflection (at midpoint) $=\delta=\rho-\rho \cos \left(\frac{\mathrm{d} \theta}{2}\right)$

$$
\mathrm{d} \theta=\frac{\mathrm{ds}}{\rho} \approx \frac{\mathrm{~L}}{\rho} \quad \delta=\rho-\rho \cos \left(\frac{\mathrm{L}}{2 \rho}\right)
$$

An arbitrary line ef above the x axis will shorten.
Its original length $=\mathrm{dx}$ and its final length $=$
$(\rho-y) d \theta \approx(\rho-y)\left(\frac{d x}{\rho}\right)=d x-\frac{y}{\rho} d x$
longitudinal strain $=\frac{\text { longit length change }}{\text { original length }}=\varepsilon$

$$
\begin{aligned}
& =\frac{(\mathrm{dx}-\mathrm{y} / \rho \mathrm{dx})-\mathrm{dx}}{\mathrm{dx}}=\frac{-\mathrm{y}}{\rho} \quad \varepsilon=\frac{-\mathrm{y}}{\rho}=-\kappa y \\
& \sigma=\mathrm{E} \varepsilon=\frac{-\mathrm{E} \mathrm{y}}{\rho}=-E \kappa y
\end{aligned}
$$

Need to find a relationship between
σ or κ and M :
$\mathrm{M}=\int_{\mathrm{A}}\left(\frac{\text { force }}{\text { area }}\right)($ dist $)($ area $)=-\int_{\mathrm{A}} \sigma \mathrm{ydA}=\int_{\mathrm{A}} \kappa E \mathrm{y}^{2} \mathrm{dA}$ If area moment of inertia $=\mathrm{I}=$ $\int_{A} \mathrm{y}^{2} \mathrm{dA}$, then $\kappa=\frac{\mathrm{M}}{\mathrm{EI}} \quad \delta=\frac{\mathrm{EI}}{\mathrm{M}}-\frac{\mathrm{EI}}{\mathrm{M}} \cos \left(\frac{\mathrm{ML}}{2 \mathrm{EI}}\right) \quad \varepsilon=\frac{-\mathrm{M}}{\mathrm{EI}} \mathrm{y} \quad$ note: $\mathrm{I} \neq \mathrm{I}_{\mathrm{p}}$ $\sigma=-\mathrm{E}\left(\frac{\mathrm{M}}{\mathrm{EI}}\right) \mathrm{y}=-\frac{\mathrm{My}}{\mathrm{I}}$ maximum tensile and compressive bending stresses occur at points located farthest from the neutral axis.
$\left(\sigma_{1}\right)_{\text {max }}=\frac{-\mathbf{M c}_{1}}{\mathbf{I}} \quad\left(\sigma_{2}\right)_{\text {max }}=\frac{\mathbf{M c}_{2}}{\mathbf{I}}$
For positive M, σ_{1} is compressive, σ_{2} is tensile. For negative M, σ_{1} is tensile, σ_{2} is compressive. So, there are up to four strength conditions to check to determine $\sigma_{\text {max }}$ for a given prismatic beam.

- see next example for center of mass and I calculation of an odd shape.

Rectangular cross-sect: $I=\frac{\mathrm{bh}^{3}}{12}$
Circular cross-sect: $I=\frac{\pi d^{4}}{64}$

The "wide-flange" shape to the left approaches the ideal crosssect shape for a beam of given area and height. The narrowness of the web is limited only by the shear stress.
note: small deflections only
note: these equations apply for cantilevered beams too
note: bending stress is NOT significantly altered by the presence of shear stresses, so $\sigma=\frac{-\mathrm{My}}{\mathrm{I}}$ can be used for non-uniform bending with $\mathrm{M}_{\max }$ yielding $\sigma_{\max }$.
e.g. 1

Given: Beam with uniform cross-section shown and uniform load.

Find: $\left(\sigma_{\mathrm{c}}\right)_{\text {max }}$ and $\left(\sigma_{\mathrm{t}}\right)_{\text {max }}$.
Neutral axis from equivalent moments:
If $\bar{y}=c_{2}$, then $(.3)(.012)(.074-\bar{y})=$
2(.068)(.012)($\bar{y}-.034$) where (.3)(.012) is A_{1} and
2(.068)(.012) is $2 \mathrm{~A}_{2}$.
$\Rightarrow \bar{y}=.06152 \mathrm{~m}$
$\Rightarrow c_{2}=.06152 m$ and $c_{1}=.08-.06152 m=.0185 m$
General formula: $\bar{y}=\frac{\sum M_{z^{\prime}}}{\sum A}=\frac{\sum A_{i} d_{i}}{\sum A_{i}}$
z'
can be ANY parallel
axis. $d_{i}=\operatorname{dist}$ from $A_{i}\left(A_{i}\right.$ neutral axis $)$ to z^{\prime}.
$\bar{y}=$ dist from z ' to z.
$I_{z}=\sum\left[\left(I_{i}\right)_{z i}+A_{i} d_{i}{ }^{2}\right]$ where $d_{i}=$ dist from z_{i} to z
(see pic to the left)
$\left(I_{1}\right)_{z 1}=\frac{1}{12}(.3)(.012)^{3}$
$\left(I_{1}\right)_{z}=\frac{1}{12}(.3)(.012)^{3}+(.3)(.012)(.074-.06152)^{2}=6.04 \times 10^{-7}$
$\left(I_{2}\right)_{z}=\left(I_{3}\right)_{z}=\frac{1}{12}(.012)(.068)^{3}+(.068)(.012)(.06152-.034)^{2}=9.32 \times 10^{-7}$
$I_{z}=\sum I=\left(6.04 \times 10^{-7}\right)+2\left(9.32 \times 10^{-7}\right)=2.47 \times 10^{-6} \mathrm{~m}^{4}$
note: the above formulas assume symmetry about $y . I_{z}$ formula also assumes symmetry about z. - i.e. A_{1} is symmetrical about z_{1} and A_{2} and A_{3} are symmetrical about Z_{2}.

Between $A B:\left(\sigma_{1}\right)_{\max }=\frac{\left(2.025 \times 10^{3}\right)(.0185)}{2.47 \times 10^{-6}}=15.2 \mathrm{MPa}$ (C)

$$
\left(\sigma_{2}\right)_{\max }=\frac{\left(2.025 \times 10^{3}\right)(.06152)}{2.47 \times 10^{-6}}=50.4 \mathrm{MPa}(T)
$$

Between BC: $\left(\sigma_{1}\right)_{\max }=\frac{\left(3.6 \times 10^{3}\right)(.0185)}{2.47 \times 10^{-6}}=27.0 \mathrm{MPa}(\mathrm{T})$
$\left(\sigma_{2}\right)_{\max }=\frac{\left(3.6 \times 10^{3}\right)(.06152)}{2.47 \times 10^{-6}}=89.7 M P a(C)$
(skipped work)

$$
\Rightarrow\left(\sigma_{c}\right)_{\max }=89.7 \mathrm{Mpa} \quad\left(\sigma_{t}\right)_{\max }=50.4 \mathrm{MPa}
$$

e.g. 2

Given: Beam cross section.
Find: c_{1}, c_{2}, I

choose z ' at bottom ($\bar{y}=c_{2}$):
$\bar{y}=\frac{\sum A_{i} d_{i}}{\sum A_{i}}=$
$\frac{(200)(100)(50)+\left[(200)(200)-\pi / 4(120)^{2}\right](200)}{(300)(200)-\pi / 4(120)^{2}}$
$=138.39 \mathrm{~mm}$
where (200)(100) is the area of the lower third and (200)(200) $-\pi / 4(120)^{2}$ is the area of the upper twothirds.
note: The upper two-thirds has height of 200 mm . Looking at the dimensions on the figure, we can see that there is a height of 40 mm above and 40 mm below the cut-out circle within this upper two-thirds block.

This symmetry explains why the last term in the numerator, d_{i}, is 200 (goes from z ' to the midpoint of the circle).

OR
$\bar{y}=\frac{(300)(200)(150)-\pi / 4(120)^{2}(200)}{(300)(200)-\pi / 4(120)^{2}}=138.39 \mathrm{~mm}$
where (300)(200) is the area of the solid rectangle and $\pi / 4(120)^{2}$ is the area of the circle.

$$
\begin{aligned}
& \left(I_{\text {rect }}\right)_{z}=\frac{1}{12}(200)(300)^{3}+(300)(200)(11.61)^{2} \\
& \left(I_{\text {circ }}\right)_{z}=\frac{\pi}{64}(120)^{4}+\pi / 4(120)^{2}(61.61)^{2} \\
& I_{z}=\left(I_{\text {rect }}\right)_{z}-\left(I_{\text {circ }}\right)_{z}=4.908 \times 10^{8} \mathrm{~mm}^{4}
\end{aligned}
$$

Bending stress design examples

Bending stress is not related to area and depends on more than one dimension (usually). It turns out, not surprisingly, that for a rectangular section in bending, $A \rightarrow 0$ as $h \rightarrow \infty$
and $b \rightarrow 0$. This is not surprising since we know that sections such as the wide-flange section, with the majority of material away from the neutral axis, are most cost effective. Design is best done using tables of common sections.
Often $\frac{I}{C_{1}}$ and $\frac{I}{C_{2}}$ are written as S_{1} and S_{2}, where $S=$ "section modulus." This simplifies the use of tables.
e.g. 1

Given: Wood beam with rectangular cross-sect, is subjected to the load shown. density

$$
=35 \frac{\mathrm{lb}}{\mathrm{ft}^{3}} \quad \sigma_{\text {allow }}=1800 \mathrm{psi}
$$

Find: Suitable size beam (base x height) from appendix A.

Simply supported beam (pin + roller), uniform load.

$$
\begin{aligned}
& \begin{aligned}
\Rightarrow M_{\max } & =\frac{q L^{2}}{8}=\frac{(420 \mathrm{lb} / \mathrm{ft})(12 \mathrm{ft})^{2}(12 \mathrm{in} / \mathrm{ft})}{8} \\
& =90,720 \mathrm{lb} * \text { in (located at midpoint, skipped work) }
\end{aligned} \\
& \sigma_{\text {allow }}= \\
& =\frac{M_{\max }}{S} \Rightarrow S=\frac{90,720}{1800}=50.40 \mathrm{in}^{3}
\end{aligned}
$$

b
(cross-section)

From Appendix A, choose the lightest (smallest cross-sect area) beam that has a section modulus S of at least $50.40 \rightarrow$ choose 3 "x12". (3"x12" nominal dimensions, 2.5"x11.25" actual dimensions, $s=52.73 \mathrm{in}^{3}$) But we still have to include the beam's own weight:

$S=\frac{90,720+\frac{(6.8)(12)^{2}(12)}{8}}{1800}=51.22 \mathrm{in}^{3}$ or $S=(50.40)\left(\frac{426.8}{420}\right)=51.22 \mathrm{in}^{3}$
This is still smaller than the section modulus for the $\mathbf{3 x} 12 \mathrm{in}$. beam, so that size is satisfactory.
note: If $c_{1} \neq c_{2}$, then the problem is more complicated, but still follows the same basic process.
note: We have ignored the phenomenon known as "lateral torsional buckling", which will be emphasized in the outline on steel design later on.
e.g. 2

Given: beam supports the two-wheeled vehicle shown.
It may occupy any position on the beam. $\sigma_{\text {allow }}=21.4 \mathrm{ksi}$

Find: $M_{\text {max }}$ and the corresponding $S_{\min }$.
e.g. 2

In terms of arbitrary distance z from the left: Support reactions:

$$
\begin{aligned}
& +\rangle \sum M_{A}: B(288)-3(z)-3(z+60)=0 \\
& \Rightarrow B=\frac{6 z+180}{288} k i p \\
& +\uparrow \sum F_{y}: A+\frac{6 z+180}{288}-6=0 \Rightarrow A=\frac{1548-6 z}{288} k i p
\end{aligned}
$$

$$
x=0^{-}: V\left(0^{-}\right)=M\left(0^{-}\right)=0
$$

$$
x=0^{+}: V\left(0^{+}\right)=\frac{1548-6 z}{288} \quad M\left(0^{+}\right)=0
$$

$$
0^{+} \leq x \leq z^{-}: V(x)=\frac{1548-6 z}{288} \quad M(x)=\int_{0}^{x} \frac{1548-6 z}{288} d x=\frac{1548-6 z}{288} x
$$

$$
x=z^{-}: V\left(z^{-}\right)=\frac{1548-6 z}{288} \quad M\left(z^{-}\right)=\frac{1548-6 z}{288} z
$$

$$
x=z^{+}: V\left(z^{+}\right)=\frac{1548-6 z}{288}-3 \quad M\left(z^{+}\right)=\frac{1548-6 z}{288} z
$$

$$
z^{+} \leq x \leq(z+60)^{-}: V(x)=\frac{1548-6 z}{288}-3 \quad M(x)=\frac{1548-6 z}{288} z+\int_{z}^{x} \frac{1548-6 z}{288}-3 d x
$$

$$
=-\frac{1}{48}(x)(-114+z)+3 z
$$

note: could then use a table to choose an efficient beam size.

Tapered beams

To really minimize the amount of material, the cross-sect dimensions can be varied so as to develop the maximum allowable bending stress at every section.
e.g.

Given: cantilevered beam with point load shown.
Find: h_{x} so that $\sigma=\sigma_{\text {allow }}$ at every cross-section.
e.g.

$$
\sigma_{\text {allow }}=\frac{M_{x}\left(\frac{h_{x}}{2}\right)}{\left(\frac{1}{12} b h_{x}^{3}\right)}=\frac{6 P x}{b h_{x}^{2}} \Rightarrow \boldsymbol{h}_{x}=\sqrt{\frac{\mathbf{6 P x}}{\boldsymbol{b} \sigma_{\text {allow }}}}
$$

note: If $c_{1} \neq c_{2}$, then the problem gets a bit more complicated.
note: angle of taper must not be too large.

Gere, James M. Mechanics of Materials: Sixth Edition. Brooks/Cole. Belmont, CA 2004.

Lee, Vincent. Lecturer. University of Southern California. CE225. Spring 2005.

APPENDIX

Appendix A
SECTION PROPERTIES FOR SAWN LUMBER AND TIMBER

$\begin{gathered} \text { Nominal } \\ \text { Size } \\ b \times h \\ \text { in. } \end{gathered}$	$\begin{gathered} \text { Standard } \\ \text { Dressed } \\ \text { Size } \\ (\mathbf{S 4 S}) \\ b \times h \\ \text { in. } \end{gathered}$	Area of Section A in. ${ }^{3}$	X-X Axis		Y-Y Axis		Board Measure per Lineal Foot	Weight in pounds per linear foot of piece when weight of wood per cubic foot equals:			
			MomentofInertiaIin. 4	Section Modulus S in. ${ }^{3}$	Moment of Inertia I in. ${ }^{4}$	Section Modulus S in. ${ }^{3}$					
								$\begin{aligned} & 25 \\ & \text { pcf } \end{aligned}$	$\begin{aligned} & 30 \\ & \text { pcf } \end{aligned}$	$\begin{aligned} & 35 \\ & \mathrm{pcf} \end{aligned}$	
1×3	7×2	1.875	0.977	0.781	0.088	0.234	\%	0.326	0.391	0.456	
1×4	4×34	2.625	2.680	1.531	0.123	0.328		0.456	0.547	0.638	
1×6	1×5	4.125	10.398	3.781	0.193	0.516	1	0.716	0.859	1.003	
1×8	4×7	5.438	23.817	6.570	0.255	0.680	3	0.944	1.133	1.32	
1×10	7×97	6.938	49.466	10.695	0.325	0.867	1	1.204 1.465	1.445 1.758	1.686 2.051	
1×12	4×114	8.438	88.989	15.820	0.396	1.055	1	1.465	1.758		
$2 \times 3{ }^{\text {a }}$	$1 \pm \times 2 \pm$	3.750	1.953	1.563	0.703	0.938	1	0.651	0.781	0.911	
$2 \times 4^{\text {a }}$	$1 \pm \times 3 t$	5.250	5.359	3.063	0.984	1.313	3	0.911 .	1.094	76	
$2 \times 6{ }^{\text {a }}$	$1 \frac{1}{1} \times 5 \pm$	8.250	20.797	7.563	1.547	2.063	1	1.432	1.719	2.005	
$2 \times 8{ }^{\text {a }}$	11×74	10.875	47.635	13.141	2.039	2.719	18	1.888	2.266 2.891	2.643 3.372	
$2 \times 10^{*}$	11×97	13.875	98.932	21.391	2.602	3.469	13	2.409 2.930	2.891 3.516	3.312 4.102	
$2 \times 12^{\text {a }}$	$12 \times 11 \%$	16.875	177.979	31.641 43.891	3.164 3.727	4.219 4.969	24	2.930 3.451	4.141	4.831	
$2 \times 14^{*}$	$1 \pm \times 13$	19.875	290.775	43.891							
3×4	24×34	8.750	8.932	5.104	4.557	3.646	1	1.519	1.823	2.127 3.349	
3×6	$2 \pm \times 54$	13.750	34.661	12.604	7.161	5.729	14	2.387 3.147	2.865 3.776	3.342 4.405	
3×8	$2 \frac{1}{2} \times 74$	18.125	79.391	21.901	9.440	7.552	$\stackrel{2}{2}$	3.147 4.015	3.776 4.818	4.405 5.621	
3×10	$2 \ddagger \times 94$	23.125	164.886	35.651	12.044	9.635	${ }_{3}^{21}$	4.883	5.859	6.836	
3×12	$2 \pm \times 11 \ddagger$	28.125	296.631	52.734	14.648	11.719 13.802	31	5.751	6.901	8.051	
3×14 3×16	21 24×13 24	38.125 38.125	484.625 738.870	73.151 96.901	17.253 19.857	13.802 15.885		6.619	7.943	9.266	
3×16	24×15										
4×4	3i \times 3i	12.250	12.505	7.146	12.505	7.146	1%	2.127	2.552	2.977	
4×6	34×54	19.250	48.526	17.646	19.651	11.229	2	3.342 4.405	4.010 5.286	4.679 6.168	
4×8	$34 \times 7 \frac{1}{2}$	25.375	111.148	30.661 49.911	25.904 33.049	14.802 18.885	24 34	4.405 5.621	5.286 6.745	7.869	
4×10	31×97	32.375	230.840	49.911	33.049 40.195	18.885 22.969	4	6.856	8.203	9.570	
4×12 4×14	$3 t \times 11 t$ $3+\times 13 t$	39.375 46.375	415.283 678.475	73.828 102.411	40.195 47.340	22.969 27.052	$4{ }^{3}$	8.047	9.657	11.266	
4×14 4×16	$3 t \times 13 t$ $3 t \times 15 t$	46.375 53.375	678.475 $1,034.418$	102.411 135.661	47.340 54.487	27.052 31.135	54	9.267	11.121	12.975	
6×6	$5 \ddagger \times 54$	30.250	76.255	27.729	76.255	27.729	3	5.252	6.302	7.352	
6×8	51×7	41.250	193.359	51.563	103.984	57.818	4	7.161	8.594	10.026	
6×10	$5 \frac{1}{} \times 9$	52.250	392.963	82.729	131.714	47.896	5	9.071	10.885	12.700 15.373	
6×12	54×114	63.250	697.068	121.229	159.443	57.979	6	10.981	13.177	15.373	
6×14	$5 \frac{1}{2} \times 13 \pm$	74.250	1,127.672	167.063	187.172	68.063	7	12.891	15.469 17.760	18.047 20.720	
6×16	$5 \frac{1}{2} \times 15 \frac{1}{2}$	85.250	1,706.776	220.229	214.901	78.146	8	「4.800	17.760 20.052	20.7294	
6×18	$5 \frac{1}{2} \times 17 \frac{1}{2}$	96.250	2,456.380	280.729	242.630	88.229	10	16.710	22.344	26.068	
6×20	$5 \frac{1}{2} \times 19 \frac{1}{2}$	107.250	3,398.484	348.563	270.359	98.313	10	18.620 20.530	24.635	28.741	
6×22	$5 \frac{1}{2} \times 21 \frac{1}{2}$	118.250	4,555.086	428.729 506.299	298.088 325.818	108.396 118.479	11 12	20.530 22.439	24.635 26.927	28.741 31.415	
6×24	$5 \frac{1}{2} \times 231$	129.250	5,948.191	506.229	325.818	118.479					
8×8	71×71	56.250	263.672	70.313	263.672	70.313	54	9.766	11.719	13.672	
8×10	$7 \frac{1}{2} \times 9 \frac{1}{2}$	71.250	585.859	112.813	383.984	89.063	$6{ }^{3}$	12.370	14.844	17.318	
8×12	$7 \frac{1}{1} \times 11 \frac{1}{2}$	86.250	950.547	165.818	404.297	107.813	8	14.974	17.969	20.964	
8×14	$71 \times 13 \pm$	101.250	1,537.734	227.813	474.609	126.563	93	17.578	21.094	24.609	
8×16	$7 \frac{1}{2} \times 15$	116.250	2,327.422	300.318	544.922	143.318	103	20.182	24.219 $\mathbf{2 7 . 3 4 4}$	28.255 31.901	
8×18	$7 \frac{1}{2} \times 17 \frac{1}{2}$	131.250	3,349.609	382.813	615.284	164.063	12	22.786	27.344 30.469	31.901 35.547	
8×20	$7 \frac{1}{2} \times 19 \frac{1}{2}$	146.250	4,634.297	475.313	684.547	182.813	134	25.391	30.469 33.594	35.547 39.193	
8×22 8×24	$7 \mathrm{x} \times 21$	161.250	$6,211.484$ $8,111.172$	577.813 690.313	755.859 826.172	201.563 220.313	143 16	27.995 30.599	36.719	42.839	
8×24	$7 \frac{1}{2} \times 23 \frac{1}{2}$	176.250	8,111.172	690.313	826.172	220.313	16	30.59			
10×10	91×91	90.250	678.755	142.896	678.755	142.896	85	15.668	18.802	21.936	
10×12	$91 \times 11 \frac{1}{2}$	109.250	1,204.026	209.396	821.651	172.979	10	18.967	22.760	26.554	
10×14	$9 \frac{1}{2} \times 13 \frac{1}{2}$	128.250	1,947.797	288.563	964.547	203.063	118	22.266	26.719 30.677	31.172 35.790	
10×16	$91 \times 15 \frac{1}{2}$	147.250	2,948.068	380.396	1,107.443	233.146	13才	25.564 28.863	30.677 34.635	35.790	
10×18	$9 \frac{1}{2} \times 17 \frac{1}{2}$	166.250	4,242.836	484.896	1,250.338	263.229	15	28.863	34.635		

