

The following derivation will assume "pure bending" (bending moment is constant/shear force V = 0) and prismatic material. Longitudinal lines in the lower part of the beam are elongated (T) while those in the upper part are shortened (C). Somewhere between the top and bottom of the beam is a longitudinal surface in which there is no

length change. This surface is the neutral surface. It passes through the centroid of the cross-sectional area, assuming that the cross sectional area is symmetrical about the xy plane and load resultants act in this plane.

note: for negative bending moment, the arrows are reversed (compression on bottom, tension on top)

 ρ = radius of curvature curvature = $\kappa = \frac{1}{\rho}$

If the flexure is small, ρ is large and κ is small.

 $\frac{ds}{2\pi\rho}(2\pi) = d\theta \text{ where } \frac{ds}{2\pi\rho} \text{ is the fraction of arc}$ length change, and 2π radians = 360°. So, $\rho d\theta = ds \quad \kappa = \frac{d\theta}{ds}$ we deal with *very* small flexure, so $\kappa \approx \frac{d\theta}{dx}$ (θ in radians)

Now we're ready to find stress, strain, curvature, and deflection, in terms of bending moment.

Deflection (at midpoint) = $\delta = \rho - \rho \cos(\frac{d\theta}{2})$

$$d\theta = \frac{ds}{\rho} \approx \frac{L}{\rho} \quad \delta = \rho - \rho \cos(\frac{L}{2\rho})$$

An arbitrary line of above the x axis will shorten. Its original length = dx and its final length =

$$(\rho - y)d\theta \approx (\rho - y)(\frac{dx}{\rho}) = dx - \frac{y}{\rho}dx$$

longitudinal strain = $\frac{\text{longit length change}}{\text{original length}} = \epsilon$

$$=\frac{(dx - \frac{y}{\rho}dx) - dx}{dx} = \frac{-y}{\rho} \qquad \varepsilon = \frac{-y}{\rho} = -\kappa y$$
$$\sigma = E\varepsilon = \frac{-E y}{\rho} = -E \kappa y$$

Need to find a relationship between σ or κ and M :

$$M = \int_{A} (\frac{\text{force}}{\text{area}})(\text{dist})(\text{area}) = -\int_{A} \sigma y \, dA = \int_{A} \kappa E y^2 \, dA \quad \text{If area moment of inertia} = I = \int_{A} y^2 \, dA, \text{ then } \kappa = \frac{M}{EI} \quad \delta = \frac{EI}{M} - \frac{EI}{M} \cos(\frac{ML}{2EI}) \quad \varepsilon = \frac{-M}{EI} y \quad \text{note: } I \neq I_p$$

$$\sigma = -E(\frac{M}{EI})y = -\frac{My}{I} \quad \text{maximum tensile and compressive bending stresses occur at points located farthest from the neutral axis.}$$

$$(\sigma_1)_{max} = \frac{-Mc_1}{I} \quad (\sigma_2)_{max} = \frac{Mc_2}{I}$$

For positive M, σ_1 is compressive, σ_2 is tensile. For negative M, σ_1 is tensile, σ_2 is compressive. So, there are up to four strength conditions to check to determine σ_{max} for a given prismatic beam.

- see next example for center of mass and I calculation of an odd shape.

 $\frac{bh^3}{12}$

Rectangular cross-sect:
$$I = \frac{\pi d}{64}$$

flange
y
web

flange

Z

The "wide-flange" shape to the left approaches the ideal crosssect shape for a beam of given area and height. The narrowness of the web is limited only by the shear stress.

note: small deflections only note: these equations apply for cantilevered beams too note: bending stress is <u>NOT</u> significantly altered by the presence of shear stresses, so $\sigma = \frac{-My}{\sigma}$ can be used for non-uniform bending with M vielding σ

$$\sigma = \frac{1}{I}$$
 can be used for non-uniform bending with M_{max} yielding σ_{max} .

e.g. 1

Given: Beam with uniform cross-section shown and uniform load.

e.g. 2 Given: Beam cross section. Find: c₁, c₂, I

choose z' at bottom (
$$\overline{y} = c_2$$
):
 $\overline{y} = \frac{\sum A_i d_i}{\sum A_i} = \frac{(200)(100)(50) + [(200)(200) - \frac{\pi}{4}(120)^2](200)}{(300)(200) - \frac{\pi}{4}(120)^2}$
= 138.39mm

where (200)(100) is the area of the lower third and (200)(200) $-\frac{\pi}{4}(120)^2$ is the area of the upper two-thirds.

note: The upper two-thirds has height of 200mm. Looking at the dimensions on the figure, we can see that there is a height of 40mm above and 40mm below the cut-out circle within this upper two-thirds block.

This symmetry explains why the last term in the numerator, d_i , is 200 (goes from z' to the midpoint of the circle).

OR

$$\overline{y} = \frac{(300)(200)(150) - \frac{\pi}{4}(120)^2(200)}{(300)(200) - \frac{\pi}{4}(120)^2} = 138.39mm$$

where (300)(200) is the area of the solid rectangle and $\frac{\pi}{4}(120)^2$ is the area of the circle.

$$(I_{rect})_{z} = \frac{1}{12} (200)(300)^{3} + (300)(200)(11.61)^{2}$$
$$(I_{circ})_{z} = \frac{\pi}{64} (120)^{4} + \frac{\pi}{4} (120)^{2} (61.61)^{2}$$
$$I_{z} = (I_{rect})_{z} - (I_{circ})_{z} = 4.908 \times 10^{8} \text{ mm}^{4}$$

Bending stress design examples

Bending stress is not related to area and depends on more than one dimension (usually). It turns out, not surprisingly, that for a rectangular section in bending, $A \rightarrow 0$ as $h \rightarrow \infty$

and $b \rightarrow 0$. This is not surprising since we know that sections such as the wide-flange section, with the majority of material away from the neutral axis, are most cost effective. Design is best done using tables of common sections.

Often $\frac{I}{c_1}$ and $\frac{I}{c_2}$ are written as S_1 and S_2 , where S = "section modulus." This simplifies the use of tables.

e.g. 1 Given: Wood beam with rectangular cross-sect, is subjected to the load shown. density

$$= 35 \frac{lb}{ft^3} \quad \sigma_{allow} = 1800 \, psi$$

Find: Suitable size beam (base x height) from appendix A.

h b (cross-section) From Appendix A, choose the lightest (smallest cross-sect area) beam that has a section modulus S of at least $50.40 \rightarrow$ choose 3"x12". (3"x12" nominal dimensions, 2.5"x11.25" actual dimensions, s=52.73 in³) But we still have to include the beam's own weight:

Beam weight = (area)(density) = $\left(\frac{2.5in}{12in/ft} \times \frac{11.25in}{12in/ft}\right) \left(35\frac{lb}{ft^3}\right) = 6.8\frac{lb}{ft}$

$$S = \frac{90,720 + \frac{(6.8)(12)^2(12)}{8}}{1800} = 51.22in^3 \text{ or } S = (50.40)(\frac{426.8}{420}) = 51.22in^3$$

This is still smaller than the section modulus for the 3×12 in. beam, so that size is satisfactory.

note: If $c_1 \neq c_2$, then the problem is more complicated, but still follows the same basic process.

note: We have ignored the phenomenon known as "lateral torsional buckling", which will be emphasized in the outline on steel design later on.

e.g. 2

Given: beam supports the two-wheeled vehicle shown. It may occupy any position on the beam. $\sigma_{allow} = 21.4ksi$ Find: M_{max} and the corresponding S_{min} .

$$M_{max} = M(z+60) = -\frac{1}{48}(z+60)(-114+z) + 3z \qquad z \in [0, 288-60]$$

$$\Rightarrow z_{max} = 99in, M_{max} = 346.7 kip * in \qquad S_{min} = \frac{346.7}{21.4} = 16.2in^{3}$$

note: could then use a table to choose an efficient beam size.

Tapered beams

To really minimize the amount of material, the cross-sect dimensions can be varied so as to develop the maximum allowable bending stress at every section.

e.g. Given: cantilevered beam with point load shown. Find: h_x so that $\sigma = \sigma_{allow}$ at every cross-section.

Gere, James M. <u>Mechanics of Materials: Sixth Edition</u>. Brooks/Cole. Belmont, CA 2004.

Lee, Vincent. Lecturer. University of Southern California. CE225. Spring 2005.

APPENDIX

.

Appendix A

SECTION PROPERTIES FOR SAWN LUMBER AND TIMBER

	Standard	Area	X-X Axis		Y-Y Axis		+	1			
			Moment		Moment		Board	Weight in pounds per linear foot of piece wh			
Mominal	Size	of	of	Section	of	Section	Measure	we	ight of woo	d per cubic	foot equa
Cina	(\$45)	Section	Inertia	Modulus	Inertia	Modulus	per		-	·	
Size	(343)	decidon.	1	S	I	S	Lineal	25	30	35	
in in	in.	in."	in.4	in.3	in.4	in.ª	Foot	pcf	pcf	pcf	
							1	0.996	0 801	0.456	
1×3	1×21	1.875	0.977	0.781	0.088	0.234	1	0.520	0.551	0.699	
1×4	1×31	2.625	2.680	1.531	0.123	0.328	\$	0.450	0.047	1.000	
1×6	1×51	4.125	10.398	3.781	0.193	0.516	*	0.716	0.859	1.005	
1×8	4×71	5.438	23.817	6.570	0.255	0.680	3	0.944	1.133	1.322	
1 1 10	1 × 91	6.938	49,466	10.695	0.325	0.867	t	1.204	1.445	1.686	
1×12	1×11	8.438	88.989	15.820	0.396	1.055	1	1.465	1.758	2.051	
		0.000	1.059	1 568	0 703	0.938	+	0.651	0.781	0.911	15
2 × 3*	1 * × 2 *	3.750	1.955	1.005	0.084	1 313	i	0.911	1.094	1.276	
2 × 4*	1 × 3	5.250	5.359	3.005	1 547	9.068	1	1.432	1.719	2.005	
2×6ª	11 × 51	8.250	20.797	7.505	0.090	9 710	11	1 888	2,266	2.643	
2×8*	11 × 71	10.875	47.635	13.141	2.039	2./19	13	9 400	2 891	3.372	
2 × 10*	11×91	13.875	98.932	21.391	2.602	3.409	13	2.109	8 516	4 109	
2 × 12*	11×11	16.875	177.979	31.641	3.164	4.219	Z	2.950	4.141	4 981	
2×14*	11×131	19.875	290.775	43.891	3.727	4.969	25	3.451	4.141	4.031	
8 4 4	24 × 84	8,750	8.932	5.104	4.557	3.646	1	1.519	1.823	2.127	2
9.4	91 4 51	18 750	34 661	12,604	7.161	5.729	11	2.387	2.865	3.342	
3×0	21 × 51	19 195	70 801	21.901	9,440	7.552	2	3.147	3.776	4.405	
3×8	21 × /1	09 195	164.896	35 651	12.044	9.635	21	4.015	4.818	5.621	
3×10	21 × 91	23.125	104.000	59 784	14 648	11 719	8	4.883	5.859	6.836	
3×12	21×111	28.125	290.031	52.754	17 959	18 909	94	5.751	6.901	8.051	
3×14	21×131	33.125	484.625	75.151	17.200	15.002	4	6.619	7.943	9.266	
3×16	21×151	38.125	738.870	96.901	19.857	15.005	-	0.010			
4×4	31×31	12.250	12.505	7.146	12.505	7.146	11	2.127	2.552	2.977	
4×6	31 × 51	19.250	48.526	17.646	19.651	11.229	2	5.342	4.010	6 169	
4×8	31×71	25.375	111.148	30.661	25.904	14.802	23	4.405	5.200	7 960	
4×10	31×91	32.375	230.840	49.911	33.049	18.885	35	5.621	0.745	7.009	
4×19	3+×11+	39.375	415.283	73.828	40.195	22.969	4	6.836	8.203	9.570	
4 × 14	84 × 184	46.375	678.475	102.411	47.340	27.052	43	8.047	9.657	11.200	
4×16	3t × 15t	53.375	1,034.418	135.661	54.487	31.135	51	9.267	11.121	12.975	1
				07 700	76 955	97 790	9	5.252	6.302	7.352	
6×6	51 × 51	30.250	76.255	21.129	109.094	97 019	4	7 161	8.594	10.026	
6×8	51 × 71	41.250	193.359	51.505	103.984	37.813		0.071	10 885	19 700	
6×10	5 × 9 ±	52.250	392.963	82.729	131.714	47.890	5	10.001	18 177	15 878	
6×12	54×11	63.250	697.068	121.229	159.443	57.979	0	10.981	15.117	18 047	1
6×14	51×131	74.250	1,127.672	167.063	187.172	68.063	1	12.891	15.405	90.790	
6×16	51×151	85.250	1,706.776	220.229	214.901	78.146	8	14.800	17.700	09 904	
6×18	51 × 171	96.250	2,456.380	280.729	242.630	88.229	9	16.710	20.052	25.394	
6 × 20	54 × 194	107.250	3,398.484	348.563	270.359	98.313	10	18.620	22.344	26.068	
6 × 99	54 × 911	118,250	4.555.086	423,729	298.088	108.396	11	20.530	24.635	28.741	1
6×24	51 × 231	129.250	5,948.191	506.229	325.818	118.479	12	22.439	26.927	31.415	
				-	000 000	70 919	E)	0 766	11 710	13,679	
8×8	7 × 7	56.250	263.672	70.313	203.072	10.513		10 970	14 944	17 819	
8×10	7±×9±	71.250	535.859	112.813	333.984	89.063	05	12.570	17.000	90.064	
8×12	71×111	86.250	950.547	165.313	404.297	107.813	8	14.974	17.909	20.904	
8×14	71×131	101.250	1,537.734	227.813	474.609	126.563	95	17.578	21.094	24.609	1
8×16	71×151	116.250	2,327.422	300.313	544.922	143.313	103	20.182	24.219	28,255	1
8×18	71 × 171	131 250	3,349,609	382.813	615.234	164.063	12	22.786	27.344	31.901	
8 2 90	74 × 104	146 950	4 684 997	475.318	684.547	182.813	13	25.391	30.469	35.547	1
0 4 20	71 - 011	161 050	6 911 494	577 919	755 850	201 568	144	27.995	33.594	39.193	1
8 × 22 8 × 94	71 × 211	176.250	8,111,172	690.313	826.172	220.313	16	30.599	36.719	42.839	
	117 202	110.200		+					10.000	01.000	†
10×10	91×91	90.250	678.755	142.896	678.755	142.896	81	15.668	18.802	21.936	
10×12	94×11+	109.250	1,204.026	209.396	821.651	172.979	10	18.967	22.760	20.554	1
10 × 14	94×184	128 950	1,947.797	288.563	964.547	203.063	113	22.266	26.719	31.172	
	01	147 950	9 049 069	900 900	1 107 448	999 146	134	25.564	30.677	35.790	1
10 16	1 4+ X 1 1+	4 / //	1 2.340.180	1 200.390	11,107.115	400.140			1950C3C101217552	2012 CO. CO. C.	