
Table of Contents 
 
 

MECHANICS OF ELASTIC MATERIALS...................................................................... 1 
Hooke’s Law ............................................................................................................... 3 
Simple statically indeterminate system (axial) ........................................................... 8 
Poisson’s Ratio............................................................................................................ 9 
Torsion ...................................................................................................................... 11 
Simple statically indeterminate system (torsion) ...................................................... 14 
Bending ..................................................................................................................... 16 
Shear ......................................................................................................................... 22 
Shear flow ................................................................................................................. 26 
Principal stresses ....................................................................................................... 28 
Mohr’s Circle ............................................................................................................ 31 
Beam deflections and rotations ................................................................................. 34 
Simple statically indeterminate system (bending) .................................................... 41 
Bearing and shear stress for connections .................................................................. 44 
Appendix ................................................................................................................... 47 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 1

 
 
 
 
 
 
 
 

 
 
 
 

MECHANICS OF ELASTIC MATERIALS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 2

“Mechanics of Materials” is typically an engineering student’s first exposure to the 
important concepts relating to material properties, such as material strength and material 
stiffness.  Material strength and stiffness are important for the analysis of structures, since 
the equations of static equilibrium are not enough to determine the distribution of forces 
within a complex structure.  In addition, knowledge of material strength and stiffness is 
vital for the design of structures, where the size (and corresponding cost) of a component 
of a structure, such as a beam, depends on both its resistance to excessive deformation 
(primarily a function of stiffness), and its ability to resist damage (primarily a function of 
strength). 
  
As we will see, beginning with this outline, two of the most important quantities in 
structural engineering are “stress” and “strain.”  The stress and strain of a material are 
often linearly-related – a discovery that dates back to 1678, when Hooke famously stated 
“ut tensio, sic vis," meaning, “as the extension, so the force."  The larger this ratio, the 
more stiff the material, and the greater its resistance to deformation.  Keeping 
deformations small is sometimes a constraint in the design of structures. 
 
A constraint that is even more often present in engineering design is to ensure that the 
material strength, which has units of stress, is not exceeded.  Stress demands, unlike 
strains, are not so easy to “see” or directly measure, but stress is a quantity that engineers 
like to use for the purpose of comparing to material strength.  Designing a structure so 
that the stress demands in all of its structural components remain less than their 
corresponding material strength values is one way that an engineer can ensure that the 
structure is safe to perform its intended function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 3

Hooke’s Law 
 

 
 

Normal stress = 
 A

P

areationalseccross

force
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kip
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Normal strain = 

)unitsno()lengthinchangeoffraction(
Llength

elongation



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note:  As the rod elongates, the area shrinks  the actual stress is slightly larger than 

that assumed above.  Similarly, the actual strain is actually 



L

, which is 

slightly smaller than that assumed above. 
 
Most general form of Hooke’s Law: 

)propertymaterial(elasticityofulusmodEwhereE   
 

note:  Unless stated otherwise, P is assumed to be an equivalent force through the 
centroid of A. 

 
note:  As a practical rule,  P/A may be used with good accuracy at any point within a 

bar that is at least as far away from the force concentration as the lateral 
dimension of that bar (d or greater in the picture below). 

 

 
note:  for non-uniform bars, such as the eyebar above, as long as you make sure that 

failure will occur in the prismatic portion of the beam, it can be analyzed using 
the normal stress and strain equations above. 
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The above picture is a graph of stress versus strain for typical structural steel.  We can see 
that the slope of the curve is E, as one would expect according to the Hooke’s Law 
equation stated above.  Many materials obey this linear relationship.  In addition, this 
portion is called the “elastic” portion, because any structure that is stressed within the 
elastic portion will return to its original state upon release of stress.  The “yield stress” as 
shown on the graph is typically considered the limit of the material.  Once the material 
reaches this stress, it continues to stretch or compress without any further load, and upon 
release of all load, will only partially return to its original state.  This phenomenon is 
called “yielding.”  The yield stress value, which is a material property, is typically 
considered the strength of the material.  Grade 50 steel, for example, has a yield stress of 
50 ksi. 
 
Often, materials are idealized as perfectly “elasto-plastic.”  As we can see on the diagram 
above, the steel is perfectly elastic, then perfectly plastic (yielding portion = “plastic” 
portion).  The dotted box in the diagram, which shows the more a smooth transition, is 
sometimes neglected. 
 
In this chapter, all materials will be assumed linear-elastic. 
 

"" rigidityaxialAE
AE

PL
  

)(
forceunit

producedchangelength

AE

L
yflexibilitffP   

)'()( LawsHookeofversionwrittencommonly
changelengthofunit

requiredforce

L

AE
stiffnesskkP  

 
 



 5

e.g. 

Given:  Dimensions of frame shown below.  LBD = 480mm, LCE = 600mm, ABD = 

1020mm2, ACE = 520mm2, Esteel = 205GPa 

Find:  Assuming member ABC to be rigid, find Pmax if the displacement at point A is 

limited to 1.0mm. 

 

  0)225()450(: CEB FPM  

FCE = 2P 
+   02: PPFFy BD FBD = 3P 

  0Fx FBDx = 0 

 

 BD = mPx
xx

xP 9
69

3

10887.6
)101020)(10205(

)10480)(3( 




  

     (shortening) 

 CE = mPx
xx

xP
8

69

3

10126.1
)10520)(10205(

)10600)(2( 







     (lengthening) 
 
B moves to B’, C moves to C’, and A moves to A’ 
by an amount A. 
 
From similar triangles, 
 

225225450
CEBDCEA  




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substitute  maxmax,0.1)( PPforsolvemmallowedA 23,200N 
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  BDCDCB PPPNPPPNFy 11 0:  

DPPcNN  32      DPN 4  
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Deformation of tapered bars in tension 
 
Continuously varying loads or dimensions; 
 


L

0

dx
)x(EA

)x(N

)x(EA

dx)x(N
d  

 
e.g. 1 
Given:  Square beam loaded by its own weight.  Density = 10 kip/ft, E = 2000ksi (see pic 

below).  
Find:   
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support reaction:  kipft
ft

kip
FA 100)10)(10(   

Top piece: 

+   yPPy
ft

kip
Fy 101000))(10(100:  

Bottom piece: 

+   yPy
ft

kip
PFy 101000)10)(10(:   OK 

 



10

0
2 000,200
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dy

ksiin

y .0025ft 

 
note:  the general formula for length change of a bar (of constant A) 

subjected to uniform 
lengthunit

force
 is 

EA

PL

2
 (P = 100kip in above 

problem) 
e.g. 2 
Given:  Rectangular tapered beam of depth 10 in. loaded by its own weight.  Same 

density and modulus of elasticity material as the above problem. 
Find:    
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Support reaction:  
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This used the fact that linearly changing area  
volume = (average area)(length) 
 

A(y)=d(y)*depth= )10)(12
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( 



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y
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note:  The tapered bar has slightly less elongation than a prismatic 
bar of equal length and volume. 



 8

note:   The area must be constant or vary linearly or the problem is more complex.  i.e. 
might be told that the top length of the tapered bar is 12 in and the bottom length 
is 8 in, and it is a circular cylinder.  So, A = 36  and 16  respectively. 

A(y) 22 )12y
100

812
(

4
)]y(d[

4








  which is NOT linear.  So, finding needed 

volumes is more complicated. 
 

Simple statically indeterminate system (axial) 
 
The following problems will be our first look at statically indeterminate (redundant) 
systems, as described in the section titled “A note on redundant systems” in the outline on 
Statics.  By knowing the properties of the materials and Hooke’s Law, which essentially 
relates force and displacement, we now have an additional equation to use for the purpose 
of finding unknown forces.  This is called an equation of compatibility.  All we have to 
do is find a way to relate displacements in members where we have unknown force(s). 
 
e.g. 1 
Given: Rigid bar of negligible weight rests on top of aluminum and steel beams.  Force P 

acts at the midpoint. 
Aluminum beam:  diameter dA = 1m, GPa70E,MPa80)( AallowedA   

Steel beams:  diameter dS = .5m, GPaEMPa SallowedS 210,220)(   

Find:  Pmax 
From symmetry (or ),0 AM  

SSS FFF  21  

+   02: PFFFy SA  

 
Equation of compatibility: 
 
Since the top bar is rigid,  

AS    

AA

A

SS

S

AE

LF

AE

LF
    (1) 

 
From   SA FPFFy 2,0 max  (2) 

 

S

S
allowedS A

F
)(    (3)    and check  

A

A
allowedA A

F
)(   

OR 

A

A
allowedA A

F
)(    (3)     and check  

S

S
allowedS A

F
)(    
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3 equations, 3 unknowns max,, PFF SA     Pmax = 144 MN  (at which point steel yields) 

 
e.g. 2 
Given:  Force P acts at the end of a rigid, pinned bar. 

wire 1:  GPaEMPammd allowed 72,200)(,4 111    

wire 2:  GPaEMPammd allowed 45,175)(,3 222    

Find:  Pmax 
 

  0)3()2(: 21 bPbTbTM A  

+   0: 21 PAyTTFy  

Equation of compatibility: 
 
From similar triangles, 

12
12 2

2




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22 2
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LT
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LT
   (1) 

 
From   ,0AM  2max1 23 TPT    (2) 

From   ,0Fy   PTTAy  21   (3) 

 

1

1
1 )(

A

T
allowed    (4)   and check: 

2

2
2 )(

A

T
allowed   

OR 

2

2
2 )(

A

T
allowed   (4)   and check:  

1

1
1 )(

A

T
allowed   

 
4 equations, 4 unknowns max21 ,,, PAyTT  maxP 1.26kN (at which point wire 2 yields)  

 
 

Poisson’s Ratio 
 
 

Lateral strain = '
lengthlateralinitial

lengthlateralinchange
  (no units) 

 
'  where  Poisson’s ratio (material property) and recall the definition of   

from the beginning of this chapter 
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(change in lateral length)=-(initial lateral length)( )(  ) 
 
note:  only applies to isotropic materials (same elastic properties in axial, lateral, or any 

direction).  Concrete and most metals are isotropic.  Wood is an example of an 
anisotropic (non-isotropic) material (it is much tougher against the grain).   

 
 
e.g. 
Given:  Hollow polymer pipe of length 4 ft, outside diameter d2 = 6 in., inside diameter 

d1 = 4.5 in., is compressed by 140 kip normal force.  E = 3000 ksi,  = .3 
Find:  Increase in wall thickness t. 
 

 

in
AE

P
dd 00509.)

)3000)(5.46(4

140
)(3(.5.4)(

2211 





  

in
AE

P
dd 00679.)

)3000)(5.46(4

140
)(3(.6)(

2222 





  





2

12
12

dd
rrt .00085in 

note:  under compression, outer diameter, inner diameter, 
and thickness all increase. 
 
note:  follow the same process for the lateral elongation (or 
shortening) for each dimension of a rectangular bar. 
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Torsion 

 
Above is a fixed, prismatic beam subjected to a torque at the right end.  

twistofanglemax   

x  depends on distance x from the wall 

p  depends on distance p from the center 

Assume distance bb’ is very small and so the arc length bb’ is approximately equal to a 
straight line bb’. 
 

r

'bb
)2](

r2

'bb
[)radians2](changelengtharcoffraction[max 


   

ab

'bb
)2](

)ab(2

'bb
[max 


  

We can see that 
L

r max
max


  is really the same expression as above. 

Also, 
L

p
r

p max
maxp


  

 G  

L
GrG max

maxmax


      

L
Gp

r

p max
maxp


  

We need to find a relationship between and T: 
 





A

max

A

p dAp)p
r

(dApT  

If polar moment of inertia = Ip = 
A

2dAp , then: 
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



p

maxp
max

I

Tr
I

r
T general formula for a circular shaft subjected to torsion 

p

max
max GI

ΤL

Gr

Lτ
      

p

maxmax
max GI

Tr

GL

r






  

max is often just written  

note:  x
Gr

x

L

x max
max


  (also note similarity of max above to 

EA

PL
 ) 

 
Solid Bar: 










  


  16

d

2

r
)

r
(ddppp

r
T

3
max

4
max

2

0

r

0p

2max  

)shaftsolid(
d

T16
3max 

  

note:  recall from calculus that the extra p in the integrand is just an extra polar 
integration factor 

 
 
 
Hollow Tube: 

 


 











2

0

2r

1rp

4
1

4
2

max4
1

4
2

max2max )dd(
32

)
2

()rr(
2

)
r

(ddppp
r

T  

)tube(
)dd(

Td16
4

1
4

2

2
max


  

 
e.g. 1 
Given:  Socket wrench transmits torque to a stuck bolt. 

shownshaftsolid,diametermm8theforGPa78GMPa460allowable   

Find:  valuetorqueallowablethisforandT maxmax   
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


16

)10x8()(
T

d

T16 33
allowable

max3max




 46.25N*m      )
d

T
F( max

max   









)
Rad

180
)(Rad29(.orRad29.

)10x
2

8
)(10x78(

)10x200)((

Gr

L

39

3
allowablemax




 16.6° 

 
e.g. 2 
Given:  Either a solid or a hollow steel shaft is to be manufactured, 

MPa40m*N1200T allowablemax      Thickness of hollow shaft =.1 2d  

Find:  and,)d(,)d( min2min0 the ratio of material usage for the hollow shaft versus the 

solid shaft. 
Solid: 

 3

allowable

max
min03max

T16
)d(

d

T16


 53.5mm 

 
Tube: 





])d8(.d[

Td16
4

2
4

2

2
max 

  

3
4

allowable

max
min2 )8.1()(

T16
)d( 





63.7mm 

Since both shafts are the same density and length, the ratio of weights = the ratio of 
volumes = the ratio of areas: 
 





2

0

2
1

2
2

solid

hollow

d4

)dd(4
A

A



.47 

 
The hollow shaft has a larger diameter, but only uses 47% as much material as the solid 
shaft.  Hollow shafts are more efficient. 
 

 

2p2

44
4

2p2

33
3

1p1

22
2

1p1

11
1 IG

LT

IG

LT

IG

LT

IG

LT
   

 
 total  

 

4321 T,T,T,T  are the internal torques within sections 

,L,L,L,L 4321  respectively, which can be found from 

drawing free body diagrams as was done for the axial 
case in the previous section on Hooke’s Law. 
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Deformation of tapered bars in torsion 
 
Continuously varying torques/dimensions; 
 


L

0 pp

dx
)x(GI

)x(T

)x(GI

)x(d)x(T
d  

 
note:  satisfactory as long as angle of taper is less than 10° 
 

)x(Ip  determined from d(x), where d is the diameter 

 
note:  A shaft in torsion has a normal stress.  If allowable  for a material is equal to, or less 

than allowable , then the design for the shaft in torsion is controlled by σ.  And, it will 

fail along a 45° axis.  (proof – section on Mohr’s Circle later in this chapter) (e.g. 
chalk) 

note:  Similarly, a member under axial load has a shear stress.  If allowable  for a material is 

equal to, or less than )(
2

1
allowable , then the design for the axially loaded member is 

controlled by τ.  And, it will fail along a 45° axis.  (proof- section on Mohr’s Circle) 
(e.g. concrete) 

 

Simple statically indeterminate system (torsion) 
 
e.g. 
Given:  Circular bar with fixed (rigid) ends shown. 
Find:  Support reactions and max . 

 

  0T2TTT 00DA  (eq of equilibrium) 

 
From the three FBD’s to the left, we can see that: 

A03A02A1 TT3TTTTTT   

So, 

p

A0

2
p

A

1 GI
10

L3)TT(

GI
10

L3)T( 
   

p

A0

3 GI
10

L4)TT3( 
  
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 








0
GI

10
L4)TT3(

GI
10

L3)TT(

GI
10

L3)T(

p

A0

p

A0

p

A
 

 (eq of compatibility) 
 

2 eq, 2 unknowns 2
T3

2

T3
T3T2

T3T 00
0D

0
A   

p

0
2

p

0

p

0
0

2
p

0

p

0

1 GI20

LT3

GI20

LT3

GI
10

L3)2
T3T(

GI20

LT9

GI
10

L3)2
T3(







   

max
p

0

p

0
0

3 GI5

LT3

GI
10

L4)2
T3T3(

 


  

 
 

Quick summation of arc-
lengths r   prove that 

21 )10
L3()10

L3(   

= 3)10
L4(   

 
note:  Direction of   for each segment should be consistent with the direction of torques 

on free-body diagrams for each segment.  Incorrect guess will simply result in 
negative values for  . 

 
note:  As always with design, the allowable stress ( allow ) and the force (T) are known, 

and we want to minimize the area A.  Axial, bearing, and direct shear stresses are 
related to A, so we can easily minimize A.  Shear stress for a solid shaft in torsion is 
not related to A, but it is related to d, so we can easily minimize A.  The stress for a 
hollow tube in torsion, however, is not related to A and it depends on more than one 
dimension ( 21 dandd ).  There are thus three unknowns ( Aand,d,d 21 ) and two 

equations (
)dd(

Td16
),dd(

4
A

4
1

4
2

2
allow

2
1

2
2





 ).  One might be tempted to use 

0
dx

dA
  for a third equation, but there is no local minimum.  It turns out, not 

surprisingly, that 212 ddanddas0A  .  The best method, for this 
particular case, would be to use a table of common tube sizes and pick the tube with 
the smallest area in which allow .  In engineering practice, methods that utilize 

tables are often used, particularly for the selection of timber and steel section sizes 
for flexure, which we will learn about next. 
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Bending 
The following derivation will assume “pure 
bending” (bending moment is constant/shear force 
V = 0) and prismatic material.  Longitudinal lines 
in the lower part of the beam are elongated (T) 
while those in the upper part are shortened ( C).  
Somewhere between the top and bottom of the 
beam is a longitudinal surface in which there is no 

length change.  This surface is the neutral surface.  It passes through the centroid of the 
cross-sectional area, assuming that the cross sectional area is symmetrical about the xy 
plane and load resultants act in this plane. 

 
curvatureofradius  

curvature = 



1

 

If the flexure is small,   is large and  is small. 




d)2(
2

ds
 where 

2

ds
 is the fraction of arc 

length change, and 2  radians = 360°. 

So, 
ds

d
dsd


   we deal with very small 

flexure, so 
dx

d
   ( radiansin ) 

Now we’re ready to find stress, strain, curvature, 
and deflection, in terms of bending moment. 

Deflection (at midpoint) = )
2

d
cos(


  

)
2

L
cos(

Lds
d








  

An arbitrary line ef above the x axis will shorten.  
Its original length = dx and its final length = 

dx
y

dx)
dx

)(y(d)y(





  

longitudinal strain = 
lengthoriginal

changelengthlongit
 

=




 y

dx

dx)dxydx(
     y

y





  

yE
yE

E 



  
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Need to find a relationship between :Mandor   
 

M =   
A A

2

A

dAyEdAy)area)(dist)(
area

force
(   If area moment of inertia = I = 


A

2dAy , then 
EI

M
    )

EI2

ML
cos(

M

EI

M

EI
    y

EI

M
   note:  I pI  

I

My
y)

EI

M
(E   maximum tensile and compressive bending stresses occur at points 

located farthest from the neutral axis. 

I

Mc
)(

I

Mc
)( 2

max2
1

max1 


  

 
For positive M, 1  is compressive, 2  is tensile.  For negative M, 1  is tensile, 2  is 

compressive.  So, there are up to four strength conditions to check to determine max  for 

a given prismatic beam. 
- see next example for center of mass and I calculation of an odd shape. 

Rectangular cross-sect:  
12

bh
I

3

  

Circular cross-sect:  
64

d
I

4
  

 
 
The “wide-flange” shape to the left approaches the ideal cross-
sect shape for a beam of given area and height.  The narrowness 
of the web is limited only by the shear stress. 
 
 
 

 
note:  small deflections only 
note:  these equations apply for cantilevered beams too 
note:  bending stress is NOT significantly altered by the presence of shear stresses, so 

I

My
  can be used for non-uniform bending with .yieldingM maxmax   
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e.g. 1 
Given:  Beam with uniform cross-section shown and uniform load. 

Find:  ( maxtmaxc )(and)  . 

 
Neutral axis from equivalent moments: 

If  )y074)(.012)(.3(.then,cy 2  

)034.y)(012)(.068(.2   where (.3)(.012) is 1A  and 

2(.068)(.012) is 2A2 . 

m06152.y   

m0185.m06152.08.candm06152.c 12   

General formula:  




 

i

ii'z

A

dA

A

M
y  

'z  can be ANY parallel 
axis.  id dist from iA  ( iA neutral axis ) to 'z .  

y dist from z’ to z. 

]dA)I[(I 2
iiiziz   where ii zfromdistd   to z 

(see pic to the left) 

( 3
1z1 )012)(.3(.

12

1
)I   

( 723
z1 10x04.6)06152.074)(.012)(.3(.)012)(.3(.

12

1
)I   

( 723
z3z2 10x32.9)034.06152)(.012)(.068(.)068)(.012(.

12

1
)I()I   

4677
z m10x47.2)10x32.9(2)10x04.6(II     

note:  the above formulas assume symmetry about y.  zI  formula also assumes symmetry 

about z.  – i.e. 1A  is symmetrical about 321 AandAandz  are symmetrical about 

.z2  
 

Between AB:  MPa2.15
10x47.2

)0185)(.10x025.2(
)(

6

3

max1    ( C) 

  MPa4.50
10x47.2

)06152)(.10x025.2(
)(

6

3

max2    (T) 

Between BC:  MPa0.27
10x47.2

)0185)(.10x6.3(
)(

6

3

max1    (T) 

  MPa7.89
10x47.2

)06152)(.10x6.3(
)(

6

3

max2   ( C) 

  maxc )(  89.7 Mpa   maxt )(  50.4 MPa 
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e.g. 2 
Given:  Beam cross section. 
Find:  I,c,c 21  

choose z’ at bottom ( 2cy  ): 





i

ii

A

dA
y  

2

2

)120(4)200)(300(

)200]()120(4)200)(200[()50)(100)(200(








 

= 138.39mm 
where (200)(100) is the area of the lower third and 

2)120(4)200)(200(   is the area of the upper two-

thirds.   
 
note: The upper two-thirds has height of 200mm. 
Looking at the dimensions on the figure, we can see 
that there is a height of 40mm above and 40mm below 
the cut-out circle within this upper two-thirds block.  

This symmetry explains why the last term in the numerator, id , is 200 (goes from z’ to the 

midpoint of the circle).  
 
OR 
 

mm39.138
)120(4)200)(300(

)200()120(4)150)(200)(300(
y

2

2










 

where (300)(200) is the area of the solid rectangle and 2)120(4
 is the area of the 

circle. 
23

zrect )61.11)(200)(300()300)(200(
12

1
)I(   

224
zcirc )61.61()120(4)120(

64
)I( 

  

48
zcirczrectz mm10x908.4)I()I(I   

 
Bending stress design examples 
 
Bending stress is not related to area and depends on more than one dimension (usually).  
It turns out, not surprisingly, that for a rectangular section in bending,  has0A  
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.0band    This is not surprising since we know that sections such as the wide-flange 
section, with the majority of material away from the neutral axis, are most cost effective.  
Design is best done using tables of common sections. 

Often 
21 c

I
and

c

I
 are written as ,SandS 21  where S = “section modulus.”  This simplifies 

the use of tables. 
 
e.g. 1 
Given:  Wood beam with rectangular cross-sect, is subjected to the load shown.  density 

= 35 
3ft

lb
  psi1800allow  . 

Find:  Suitable size beam (base x height) from appendix A. 
 
Simply supported beam (pin + roller), uniform load. 


8

)ft
in12()ft12)(ft

lb420(

8

qL
M

2
2

max   

=90,720 lb*in   (located at midpoint, skipped work) 

3max
allow in40.50

1800

720,90
S

S

M
  

 
 

From Appendix A, choose the lightest (smallest cross-sect area) beam that has a 
section modulus S of at least 50.40choose 3”x12”.  (3”x12” nominal 
dimensions, 2.5”x11.25” actual dimensions, s=52.73 )in3  But we still have to 
include the beam’s own weight: 

Beam weight = (area)(density)= ft
lb8.6)

ft
lb35)(

ft
in12

in25.11
x

ft
in12

in5.2
( 3   

33

2

in22.51)
420

8.426
)(40.50(Sorin22.51

1800
8

)12()12)(8.6(
720,90

S 


  

This is still smaller than the section modulus for the 3 x 12 in. beam, so that size is 
satisfactory. 
 
note:  If ,cc 21   then the problem is more complicated, but still follows the same basic 

process. 
note:  We have ignored the phenomenon known as “lateral torsional buckling”, which 

will be emphasized in the outline on steel design later on.   
 
e.g. 2 
Given:  beam supports the two-wheeled vehicle shown. 

It may occupy any position on the beam.  ksi4.21allow   
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Find:  maxM  and the corresponding S min . 

 
In terms of arbitrary distance z from the left: 
Support reactions: 

  0)60z(3)z(3)288(B:M A  

kip
288

180z6
B


  

+ kip
288

z61548
A06

288

180z6
A:Fy 




  

0)0(M)0(V:0x    

0)0(M
288

z61548
)0(V:0x 


   

x
288

z61548
dx

288

z61548
)x(M

288

z61548
)x(V:zx0

x

0









   

z
288

z61548
)z(M

288

z61548
)z(V:zx





   

z
288

z61548
)z(M3

288

z61548
)z(V:zx





   

 








 
x

z

dx3
288

z61548
z

288

z61548
)x(M3

288

z61548
)x(V:)60z(xz  

z3)z114)(x(
48

1
  

 

]60288,0[zz3)z114)(60z(
48

1
)60z(MM max    

in*kip7.346M,in99z maxmax     3
min in2.16

4.21

7.346
S   

 
note:  could then use a table to choose an efficient beam size. 
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Tapered beams 
 
To really minimize the amount of material, the cross-sect dimensions can be varied so as 
to develop the maximum allowable bending stress at every section. 
 
e.g. 
Given:  cantilevered beam with point load shown. 
Find:  xh so that allow   at every cross-section. 

 


2

x
3

x

x
x

allow
bh

Px6

)bh
12

1
(

)
2

h
(M


allow

x b

Px6
h


  

note:  If ,cc 21   then the problem gets a bit  more 
 complicated. 
note:  angle of taper must not be too large. 
 
 

 

Shear 
 
Shear deformation 

If a shear force  acts on the upper 
face, each side must have an equal 
shear force (in the directions shown) 
for equilibrium. 
 
The shear forces create a distortion 
as shown.   is called the shear strain 
(radians). 
 
Shear stress – strain diagrams appear 
similar to the axial diagram that was 
shown at the beginning of this 
chapter. 

 = G  
where G = Shear Modulus of 
Elasticity (material property) 

 = 
AG

V
, where A = shear area 
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note:  G = 
)1(2

E


 (skipped proof) 

 
e.g. 
Given: “bearing pad” with dimensions shown, subjected to force shown. 
Find:   and d. 

 
 
 
 
 
 

)tan(tan
11 abG

V
hhd

abG

V

ab

V
   

 
 
 
 
 
 

 
Shear stress in flexure 
 

From equilibrium of shear, the shear stress 
in the vertical direction is matched with an 
equal shear stress in the horizontal direction.  
And, from equilibrium of force in the x 
direction, 





A

y )dA](
I

y)dMM(
[]dx)y(t[*)(  


A

)dA](
I

My
[  

The units match, since we have: 

)A](A
F[)A](A

F[]A[*)A
F(   

 
The area A is the area shaded, not the entire 
cross-sectional area. 
 


A

y ydA
)y(t*I

1

dx

dM
 

)y(t*I

VQy
y  (General Formula)    where Q = ”first moment” = 

A

ydA  
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note:  In pure bending, V = 0, so 0 .  Also, M + dM = M in that case, so .0  

For rectangular cross-sect, t(y) = b (base) and )y
4

h
(

2

b
Q 2

2

y   

3

22

y bh2

)y4h(V3 
   (rect cross-sect) (skipped work)  

max occurs at y=0, which is the neutral axis. 

A2

V3
max   (rect cross-sect)  A=bh 

 
note:  Although   was calculated as being horizontal, there must be vertical shear that is 

equal, so maxV is determined from the SFD.  Area A is always the cross-sectional 

area. 
note:  Now it is possible to optimize the bending stress for a rect sect, although designers 

still usually use tables. 
 
e.g. 
Given:  Wood beam with rectangular cross-sect, is subjected to load shown.  

psi1800,psi200 allowallow    

Find:  Optimal beam size (assume beam weight already included in load q). 
 

in*lb880,92
8

qL
M

2

max   

Supports: A = B = maxVlb2580
2

)12(430
  

1800 = 
2

3
allow bh

557280

)bh
12

1
(

)2
h(92880

I

My
         (1) 

200 = 
bh

3870

)bh(2

)2580(3

A2

V3
allow                      (2) 

2 eq, 2 unknowns; 
 

h=16”, b=1.21” ( 2
min in35.19bhA  ) 

note:  h>>b, as expected. 
note:  (compare to e.g. 1 of the “Bending stress design examples” section)  Even though 

an overly large allowance for the beam’s own weight was provided, and very small 
,allow  this beam was still about 2/3 the weight of the beam chosen in e.g. 1.  Of 

course, this is also largely due to the limited selection of available beams in the 
Appendix A. 

 
For circular cross-sect,   is complicated away from the neutral axis.  But, we can still 
find max which has been proven experimentally to be located at the neutral axis: 
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t(0) = d (diameter) and 3
0 d

12

1
Q   

A3

V4
max   (solid shaft) (skipped work)  A = 2r  

)
rr

rrrr
(

A3

V4
2

1
2

2

2
112

2
2

max



    (hollow tube)  A = )rr( 2

1
2

2   

note:  Just like a rect sect, it is now possible to optimize a tubular section, although the 
use of a table is more practical.  Just make sure max after a size with appropriate 

section modulus has been chosen from the table. 
 
Wide-flange cross section: 

 
Although the resultant forces are located in the xy plane, there are 
forces distributed all over the upper flange.  This creates a bending 
moment in the flange about the x axis and accompanying bending 
stresses and horizontal shear stresses.  The web has only vertical shear 
stresses which can easily be determined.  For the web, t(y) = t (web 

thickness) and yQ  = )y4h(
8

t
)hh(

8

b 22
1

2
1

2  , 

)thbhbh(
12

1
I 3

1
3

1
3  . 

- see next example for Q calculation of odd shape. 

)thbhbh(t2

)]y4h(t)hh(b[V3
3

1
3

1
3

22
1

2
1

2

y



  (wide-flange beam)      

      (skipped work) 
 

max occurs at the neutral axis 

)thbhbh(t2

)thbhbh(V3
3

1
3

1
3

2
1

2
1

2

max



  

note:  a typical wide-flange beam design would be to design for allow  from a table, and 

then check allow . 

1
ave th

V
  and in this case is close to max (within 10% plus or minus), so ave is 

sometimes used in practice.  We will learn methods for calculating shear, which are more 
often used in practice, in later chapters on concrete design and steel design. 
 
note:  ave  was also used in the design of bolted connections in chapter 1. 

 
e.g. 
Given:  Location of neutral axis.  lb000,10V,in65.69I max

4  . 

Find:  max  in web. 
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First moment from  iiy dAQ  

iA  area a distance y  away from neutral axis. 

iii A(Afromcetandisd   neutral axis) to z.   

 
Choose y in web above neutral axis: 

 )]y955.47(
2

1
y)[y955.47(x1(Qy  

2y
2

1
3.12)]955.47(

2

1
)[4x1(   

where )y955.47(x1   is the shaded area at the top 
of the web, and (1x4) is the flange area. 
 
OR 
 
Choose y in web below neutral axis:  

 )]y955.4(
2

1
y)][y955.4(x1[Qy  

     2y
2

1
3.12   

 as expected, where )]y955.4(x1[   is the shaded area at the bottom of the web. 

maxQ  occurs when y = 0.  Since t(y) is constant, max also occurs when y = 0 (a.k.a. the 

neutral axis z) 
 

ksi8.1
)1(65.69

)3.12(10000

tI

VQ
max     

note:  max  occurs at the neutral axis for almost any cross-section. 

 

Shear flow 
 

Shear flow = yq = )y(t*  or 
I

VQ
q y

y  )
dist

force
(  where y is the distance at which there is 

to be nailing or welding.  Q would typically be found after a beam size has been chosen. 
The strength of a weld is usually specified in terms of force per unit distance, as we will 

see later on in the outline on steel design.  So, the required weld strength = q (or 
2

q
 for 

the picture shown below).  Nail and screw strength is usually specified in units of force F.  

Nail spacing = s = ,
q

F
 where F (allowable force of the screw or nail) can be looked up for 

a given nail type. 
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For a “Box beam”, you can think of the segment 

Since there is negligible   about the x axis for a 
box beam, we need only consider ,0Fx   

which shows that   shown differs from the   
we’ve been calculating only in that t(y) is the 
vertical cross-sect thickness (same Q and I 

(about the z axis) can be used).  Since shear flow does not depend on thickness, there is 
no difference in q.  Q would be integrated over the shaded region above. 
 
e.g. 
Given:  Box beam shown subjected to shear force V = 10.5 kN.  Allowable screw force 
(shear force for screw) F = 800 N. 
Find:  Screw spacing s. 
 
 

 
33 mm10x864)120)(40)(180(Q   

33 )40*2280)(180(
12

1
)280)(15*2180(

12

1
I   

= 46 mm10x2.264  

mm
N3.34

)10x2.264(

)10x864)(10x5.10(

I

VQ
q

6

33

  


3.34

)800(2

q

F2
S 46.6mm 
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Principal stresses 
 

Stresses are positive if positive face – positive direction or 
negative face – negative direction. 
(All stresses shown are positive with respect to these axes) 
 

102
2

0
1 secAA

A

A
cos   

101
0

1
1 tanAA

A

A
tan   

 
From   ,0Fand0F yx  

1xy1
yyxxyyxx

1x1x 2sin2cos
22







  

1xy1
yyxx

1y1x 2cos2sin
2

)(



  

]180,0[1   
 
These are the “transformation equations” for plane stress. 

maxmax and  from these equations are the true maximum 

stresses in a beam (except for the special case where they 
occur out-of-plane).  maxmax and  may occur at a location 

of ,)(,)(,)( maxxymaxyymaxxx  or may occur at a location 

where none of the above are maximized.   
 
note:  yy  for a given region in a beam is the distributed 

load q divided by the cross-sect thickness t at that 
location. 
 

note:  yy  usually compressive (negative in the above equations) since our distributed 

loads act downward.  xx  direction determined from bending stress and external 

axial load (
I

My

A

P
 ).    direction determined from inspection of the internal 

vertical equilibrium (NOT SFD) (see below). 
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  reversed because location 
is to the right of the point load. 
 
  reversed because section 
chosen is in upper portion of 
beam. 
 
 
 

 
 
note:  The beams of chapter five usually contain all three forces.  Since yy  depends on x 

(distance along beam) and y (in relation to neutral axis), xx  depends on x and y, xy  

depends on x and y, and 1  also varies between 0 and 180°, finding the exact location 

and angle of max and max  can usually only be approached through trial and error using 

the transformation equations.  For design, transformation equations are accounted for in 
the safety factor, but can be checked as follows. 
 
Principal Angles 
 
The following is useful assuming that a location O within a beam has been chosen and 

yyxxxy ,,   are known. 

From ,0
d

d

1

1x1x 



  
yyxx

xy
p

2
)(2tan




  (critical angles for normal – “principal stress”) 

Two solutions: ]180,90[and]90,0[ pp   which correspond to 2p1p and   though 

not necessarily in that order.  2p1p and   differ by 90°. 

2
xy

2yyxxyyxx
max1x1x1xp1xp )

2
(

2
)( 





  (skipped work) 

2
xy

2yyxxyyxx
min1x1x2xp2xp )

2
(

2
)( 





   

(could be greater magnitude than max""1x1x )( ) 

 
 
note:  02xp2xp1xp1xp   (proof Mohr’s Circle – see next section) 

note:  The true min and max normal stress could be located “out-of-plane” (not 
calculated) 
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From ,0
d

d

1

1y1x 




xy

yyxx
s 2

)(
)(2tan




  (critical angles for shear stress) 

Two solutions:  ]180,90[and]90,0[ ss   which correspond to 2s1s and   though 

not necessarily in that order.  2s1s and   differ by 90°. 

2
OR)

2
()( 2xp2xp1xp1xp2

xy
2yyxx

max1y1x1ys1xs





  

max1y1xmin1y1x2ys2xs )()(   

 

note:  2xs2xs1xs1xs
yyxx

ave 2



  (Proof Mohr’s Circle – see next section) 

note:   451p1s  (Proof Mohr’s Circle) 

note:  The true min and max shear stress is located out-of-plane if 2xp2xp1xp1xp and   have 

the same sign:   [
2

)(and
2

)( 1xp1xp
2xpaboutminmax/

2xp2xp
1xpaboutminmax/





 ]. 

 
e.g. 
Given:  psi4700psi4200psi12300 xyyyxx    

Find:  2ys2xs1ys1xs2xp2xp1xp1xp ,,,   

 




 33.33067.292
2

2tan p
yyxx

xy
p 




  

 2.75and2.165p  

)2.165(2sin)2.165(2cos
22 xy

yyxxyyxx 








 

= 13540 psi = 1xp1xp  

)2.75(2sin)2.75(2cos
22 xy

yyxxyyxx 








 

= -5440 psi = 2xp2xp  

check: 

2
xy

2yyxxyyxx )
2

(
2










 

= -5440 and 13540, as expected 
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


 4.602
2

)(
2tan s

xy

yyxx
s 




  

 2.120and2.30s  

)2.30(2cos)2.30(2sin
2

)(
xy

yyxx 





 

= -9490 psi = 2ys2xs  

)2.120(2cos)2.120(2sin
2

)(
xy

yyxx 





 

= 9490 psi = 1ys1xs  

 

check:  9490)
2

( 2
xy

2yyxx 


 


 

note:   2.120452.165451p1s   

note:  9490
2

)5440(13540

2
2xp2xp1xp1xp

2ys2xs1ys1xs 








  

note:  ave2xs2xs1xs1xs2yp2xp1yp1xp and0    could also be shown easily 

 

Mohr’s Circle 
 

1xy1
yyxxyyxx

1x1x 2sin2cos
22







  

and 

1xy1
yyxx

1y1x 2cos2sin
2

)(



  

are the parametric equations of a circle. 
 

Manipulation:  Bring 
2

yyxx 
 to the left side of the top equation, square both sides of 

the equation, and then add the two equations; 

2
xy

2yyxx22
1y1x

2
ave1x1x )

2
(RR)( 


  is the algebraic equation of a 

circle. 
 
Knowing xyyyxx ,,  : 

- we can now find 1y1x  directly from 1x1x  without knowing   (and vice-versa). 

- we can construct the circle with an accurate scale and immediately see all values 
of 1x1x1y1x and  and their corresponding 1  (by measuring 12  with a 

protractor). 
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note:   1y1x  is positive downward, and  0  does NOT 

   necessarily start at the .axis1x1x  

note: @ 0,PandP 21   

  @ ave21 ,SandS   

  451p1s , all as expected. 

Also, 

2

)()(

2

diameter
radius)( min1x1xmax1x1x

max1y1x


  

 
 
Procedure for drawing Mohr’s Circle; 
 
First, draw axes. 
Second, the center of the circle corresponds to ( )0,ave . 

 A straight line through the center connecting 
( ), xyxx   and ),( xyyy  is the circle’s diameter. 

(2R also = diameter) 
 0  corresponds to 1802),,( xyxx   

corresponds to ),( xyyy   

 Draw the circle 
 Find  and values of interest directly from circle (if drawn with accurate scale), 

or from transformation equations, or using trig. 
 
If we know the stresses ,and,, 1y1x1y1y1x1x  at a known angle ,1  we can construct the 

circle first in terms of these stresses and then move clockwise ,for2 xx1   ,yy .and xy  

 
e.g. 
Given:  psi12300xx   psi4200yy     psi4700xy   

Find:   45atstressesAND,,,,,,, 12ys2xs1ys1xs2xp2xp1xp1xp2s1s2p1p   
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4050
2

)4200(12300
ave 


  

9490)4700()
2

)4200(12300
(R 22 


  

  7.29)
8250

4700
(tan2 1  

 3.1507.291802 2p  

 2.752p  

 
 

 
 Rave2xp2xp  -5440 psi 

 2.1653.3307.293602 1p1p   

 Rave1xp1xp  13540 psi 

 2.303.607.29902 2s2s   

 R2ys2xs -9490 psi 

 2.1203.2407.292702 1s1s   

 R1ys1xs 9490 psi 
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 3.60sin94901y1x -8245 psi 

 3.60cos949040451x1x -660 psi 

 
- compare solutions with the previous example 
 
 
 
 
 

 
 

Beam deflections and rotations 
 

 

dx

d

ds

d 



  and 


tan

dx

d
 

So, 
EI

M

dx

d

dx

d
2

2







 

M
dx

d
EI

2

2




  

Substitute BMD function(s) for M, and 
integrate. 
 
 

 EIEIEI'EIM''EIV'''EIq''''EI  
 
q, V, M should be non-zero constant, or functions of x  
(If non-prismatic beam, then I also depends on x) 
 
note:  small deflections only 
 
Solving the second-order bending moment equation ,M''EI  yields two constants of 
integration (for each segment of a beam).   We need two sets of initial conditions (for 
each segment).  There are always enough to choose from, if the system is statically 
determinate: 

 
Simply-supported beam shown: 
 

- boundary conditions: 
 0)A(   

 0)B(   
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- continuity conditions: 
 )C()C(    

 )C(')C('    
- symmetry conditions: 

none 
 

Cantilevered beam shown: 
 

- boundary conditions: 
 0)A(   

 0)A('   
- continuity conditions: 

 )C()C(    

 )C(')C('    
- symmetry conditions: 

none 
 
e.g. 1 
Find:  Deflection curve .,, maxmax   

 

2

qx

2

qLx
)

2

x
(qx)x(

2

qL
M

2

  (skipped work) 

2

qx

2

qLx
"EI

2

  

   dx
2

qx
dx

2

qLx
'EIdx"EI

2

  

1

32

C
6

qx

4

qLx
  

  21

43

CxC
24

qx

12

qLx
EIdx'EI   

symmetry condition:  0)
2

L
('   

24

qL
CC)

2

L
(

6

q
)

2

L
(

4

qL
0

3

11
32   

2

343

C
24

xqL

24

qx

12

qLx
EI   

boundary condition:  0)0(or0)L(    

0C2   

)xLx2L(
EI24

qx 323    0'atlocatedmax   
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ectedexpas
2

L
x0

24

qL

6

qx

4

qLx 332

  

 )
2

L
(max 

EI384

qL5 4

  0"atlocatedmax   

ectedexpasLor0x0
2

qx

2

qLx 2

  

 )0(')L('max 
EI24

qL3

 

 
e.g. 2 
Find:  max2121 ,,,Lxa,ax0     

 
 

L

Pbx
M:ax0     (skipped work) 

)ax(P
L

Pbx
M:Lxa   (skipped work) 

 

L

Pbx
"EI 1      )ax(P

L

Pbx
"EI 2   

1

2

1 C
L2

Pbx
'EI     2

22

2 C
2

)ax(P

L2

Pbx
'EI 


  

31

3

1 CxC
L6

Pbx
EI    42

33

2 CxC
6

)ax(P

L6

Pbx
EI 


  

continuity condition:  )a(')a(' 21
    

2

22

1

2

C
2

)aa(P

L2

Pba
C

L2

Pba



   21 CCtermscancelling   

continuity condition:  )a()a( 21
    

42

33

31

3

CaC
6

)aa(P

L6

Pba
CaC

L6

Pba



   43 CCtermscancelling   

boundary condition:  0)0(1   

0CC)0(C
L6

)0(Pb
0 331

3

  

boundary condition:  0)L(2   

42

33

CLC
6

)aL(P

L6

)L(Pb
0 


   

L6

)bL(Pb
C0C

22

24


  
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:ax0      :Lxa   
 

)xbL(
LEI6

Pbx 222
1 


   

EI6

)ax(P
)xbL(

LEI6

Pbx 3
222

2





  

)x3bL(
LEI6

Pb
' 222

11 


   
EI2

)ax(P
)x3bL(

LEI6

Pb 2
222

2





  

For a > b, max  obviously )a,0(  . 

3

bL
x0'at

22

1max


   


 )

3

bL
(

22

1max  )ba(
LEI39

)bL(Pb 2
3

22




 

 
note:  The special case method for finding intmidpo  in the flexure derivation can still be 

used. 
 
note:  Starting with the bending moment equation always works. 
 
 
Superposition 
 
For beams with common uniform loads AND point loads, where )x(and)x(  can be 
looked up in a table for the cases where each type of loading is acting alone, 

  totaltotal and .  Values can be found at specific points, or general (in terms 

of x) formulas can be found.   
Superposition can provide a useful shortcut for unusual loads too.  But for these loads, it 
is usually NOT possible to obtain a general formula )x(and)x(  for the whole beam 
because point load formulas (which are different for the left side of the load versus the 
right side) must be summed, and the shortcut involves an infinite number of point loads. 
(see next example). 
 
e.g. 
Find:  c  

 
Method 1:  find M(x) and solve "EI  
Method 2:  find )x(q  and solve ]C,A[''''EI   
Method 3:  point load midpoint deflection formula (tabulated in the appendix of many 

textbooks):  ab)a4L3(
EI48

Pa 22   (note:  this equation works for all points 

under the load, i.e. between A and C) 
  

For an arbitrary point under the triangular load, the force P = qdx = dx
L

xq2 0  and the 

distance “a” is “x”.  The deflection at C is the sum of the deflections caused by each 
infinitesimal force. 
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 
2

L

0

22
c dx)x4L3(

EI48

qx
EI240

Lq 4
0  

 
Method 4:  point load deflection formula for Lxa   
from a previous example: 
 
“a” is “z” and “b” is “L-z” 

EI6

)ax(P
)xbL(

LEI6

Pbx 3
222 



 

dz
L

zq2
qdxP 0  

)x)zL(L(
EIL3

)x)(zL(zq
]B,C[)x( 222

2
0 


   

EI1440

)x20Lx60xL43L3(Lq
dz

LEI3

)zx(zq 3223
0

3
0 




  

)2
L(

EI240

Lq 4
0

 

 
 

note:  If the triangular load starts at a distance “k” away from A, then the lower limit of 
integration would be k. 

 
note:  There is no easy way to obtain a general formula for the beam, which includes 

]C,A[)x(  , because under the triangular load, the location of   is to the left of 
some of the “point loads” and to the right of others (two separate formulas). 

 
Moment-Area Method  
 
Just like load equations, this method is particularly useful for cantilevered beams. 
 

AB
A

B   

EI

Mdx
d

EI

M

dx

d

ds

d






 

 
B

A
A

B d  


B

A

AB EI

Mdx
 (cantilevered beam) 
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AB
A

B ttt   

'ds)r2(
2

d





 

ds’ = r d  

1xranddt'ds   

EI

Mdx
xdxdt 11   

( 1x  with respect to B as shown) 
 
note:  Although it may not be obvious, the 
 assumptions made here are the same as 
 dxds  and tan . 


B

A
A

B dtt  


B

A

1
AB EI

Mdxx
tt  (cantilevered beam) 

If A = fixed end, then BBt  , 

0)xx(t AABA   (cantilevered) 
 
 

Note:  For simply supported beams, since the concavity is reversed compared to 
cantilevered beams,   is oriented differently, and t is on the opposite side of the 
deflection curve from  .  (see second e.x.) 

 
 
e.g. 1 
Find:  B  
 

Method 1:  find M(x) and solve EI "  
Method 2:  find –q(x) and try to solve EI ]B,C[''''   
Method 3:  point load end point deflection formula and 
 superposition 
Method 4:  point load deflection formula for cantilevered beam 

     for Lxa   and superposition 
 

Method 5:  use area under 
EI

M
 diagram 
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)
4

L3
(

EI16

qL
)

4

L

2

L
)(

EI8

qL
(

2

L
Ax

32

22   

)]
2

L
(

3

2

2

L
)[

EI8

qL

EI8

qL3
)(

2

L
(

2

1
Ax

22

33   

)
6

L5
(

EI16

qL3

  

)]
6

L5
(

EI16

qL
)

4

L3
(

EI16

qL
[dt

33C

A

  

 
B

C

1
B

C

dx
EI

Mx
dt   where xLx1   

and  22 qL
2

1
qLxqx

2

1
M   








L

2
L

4
22

B

C

1

EI128

qL
dx

EI

)qL
2

1
qLxqx

2

1
)(xL(

dx
EI

Mx
 

BAB    since 0A  . 

  EI128

qL
)

6

L5
(

EI16

qL
)

4

L3
(

EI16

qL
dt

433B

A

B EI384

qL41 4

 

 
e.g. 2 
Find:  D  

 
 

rd'ds   

1xranddt'ds   
Just as in the derivation for the cantilevered beam. 

)bL(
EI6

Pab
)

3

bL
(

EI2

Pab
xAt 11

A
B 


  

 
From similar triangles, 

)
L

t
(

b

z
)bL(

LEI6

Pab

L

t
A

B

A
A

B

   

)bL(
LEI6

Pab
z

2

  

LEI6

bPa
)

3

a
)(

LEI2

bPa
(xAt

32

22
A

D   
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 )tz(t
A

D
A

BD LEI3

bPa 22

 

 
 

 
 

note:  In either of these last two examples, a general formula for   would have been 
possible using the moment-area method. 

 

Simple statically indeterminate system (bending) 
 
For a vertically-loaded beam, there are two relevant equations of equilibrium.  If there are 
more than two unknowns (redundant supports) , then the extra equations needed may 
come from ''','',',   in terms of the unknown reactions.  ''','',',   combined 
with the initial conditions, are the equations of compatibility. 
 
e.g. 1 
Find:  forB,A,M yyA the propped cantilevered beam. 

 
 
Equations of Equilibrium: 
+ yyyyy APB0PBA:F     (1) 

0PbM)L(A:M AyB   

PbLAM yA                                          (2) 

 
 

:ax0       :Lxa     

yA'''EI       PA'''EI y2   
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xAM''EI yA1       
x

a

yyA2 PdxAaAM''EI  

    = PaaAPxxAaAM yyyA   

1

2
y

A1 c
2

xA
xM'EI     1

22
y

A2 dPax
2

Px

2

xA
xM'EI   

21

3
y

2
A

1 cxc
6

xA

2

xM
EI 


   

2

Pax

6

Px

6

xA

2

xM
EI

233
y

2
A

2 


  

    21 dxd     
 

Boundary conditions: 
0c0)0( 21   

0c0)0(' 11   
 
Continuity condition: 

2

Pa
d)a(')a('

2

121


  (substituted (2)) 

 
Boundary condition: 

)]PA(L2LPa3[
6

1
d0)L( y

32
22   

 
Extra continuity condition : 
(equation of compatibility) 
 

)a()a( 21     

)]PA(L2LPa3[
6

1

2

Pa

2

Pa

6

Pa
0 y

32
333

                                    (3) 

 
# unknowns:  3B,M,A yAy   

# equations:  2 equil + 1 extra / compatibility = 3 
 

2A3

2

y3

22

y L2

)bL(Pab
M

L2

)aL3(Pa
B

L2

)bL3(Pb
A








  

- we can now find  or,,  like any statically determinate beam 
 
note:  we could also find   for fixed A, load P, and no roller B, then find   for fixed A, 

force ,By  and no load P, and   0)B( , as our compatibility equation. 

 
e.g. 2 
Find:  BAyy M,M,B,A  for the fixed-end beam. 
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- Same exact differential equations as the previous e.x.-  
 
But, now we have four unknowns. 
 
The extra equation comes from  0)L('2  
4 equations 
 
+   yyyyy APB0PBA:F    (1) 

  0MPbM)L(A:M BAyB  

PbLAMM yAB                                 (2) 

 
note:  ,0)L('''2   

0)L(''2   because the equation is valid for 
 Lxa  only. 

 
Boundary conditions: 

0c0)0( 21   

0c0)0(' 11   

)]AP(LaP2M2[L
2

1
d0)L(' yA12   

)]PA(L2M3aP3[L
6

1
d0)L( yA

2
22   

Extra conditions : 
(equations of compatibility) 
 

 )a()a( 21   

)]AP2(aM3)PA(L2[)La(
6

1
)M3aA(a

6

1
yAy

2
Ay

2                   (3) 

 
 )a(')a(' 21   

0)]aPM(L2Pa)PA(L[
2

1
A

2
y

2                                                           (4) 

 
 
# unknowns:  4M,B,M,A ByAy   

# equations:  2 equil + 2 extra / compatibility = 4 
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2

2

B3

2

y3

2

y2

2

A L

bPa
M)b2L(

L

Pa
B)a2L(

L

Pb
A

L

Pab
M   

 
 
Superposition 
 
e.g. 
Find:  Ayy M,B,A  

 
We can find the propped cantilevered reactions from a 
point load from a table or from the e.x. in the previous 
section.  
 








2

L

0
3

22L

2
L

3

22

y L2

))xL(L3)(xL(qdx

L2

)bL3)(b(qdb
A  

=
128

qL57
 







 
2

L

0
3

22
L

0
3

2

y L2

)xL3()x(qdx

L2

)aL3()a(qda
B

128

qL7
 







 
2

L

0
22A L2

)]xL(L)[xL)(x(qdx

L2

]bL[Pab
M

128

qL9 2

 

 

Bearing and shear stress for connections 
 
Bearing stress = Fb/Ab= b  where A b could be the thickness of a bolt plate multiplied 

by the diameter of the bolt, and Fb is the force acting on 
that bolt. 
 
Shear stress = V/A =  where V is the shear force 
and A could be the cross-sect area of a bolt at the location 
of the bolt plate. 
 
 
e.g. 
Given:  Force of 32kN on the angle bracket shown. 
Find:  b and for each bolt. (see below) 
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MPa
x

A

F

Atotal

A

topbb

topb
bolttopb

55.35
)01)(.015(.3)015)(.015(.2

1032

)(
)

)(
()(

3







 

 

MPA
A

F

Atotal

A

bottombb

bottomb
boltbottomb 55.35

)(
)

)(
()(   

MPa
x

A

F

Atotal

A

top

top
bolttop

32.54
])01(.3)015(.2[4

1032

)()(

22

3












 

MPa
A

F

Atotal

A

bottom

bottom
boltbottom 32.54)()(   

 
 
 
Double Shear 
 

 
 

2)d(4

2
P


  
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Multiple Shear 
 

 
 
 
 
 
 
Strong and weak neutral axes, shear stresses, and bending stresses, for asymmetric 
sections, can be found in graduate level courses on Advanced Mechanics of Materials, 
Advanced Structural Analysis, or Advanced Steel Design.  Buckling is another important 
phenomenon that is left to more advanced courses. 
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