Table of Contents

MECHANICS OF ELASTIC MATERIALS	
Hooke's Law	
Simple statically indeterminate system (axial)	
Poisson's Ratio	9
Torsion	
Simple statically indeterminate system (torsion)	
Bending	
Shear	
Shear flow	
Principal stresses	
Mohr's Circle	
Beam deflections and rotations	
Simple statically indeterminate system (bending)	
Bearing and shear stress for connections	
Appendix	
**	

MECHANICS OF ELASTIC MATERIALS

"Mechanics of Materials" is typically an engineering student's first exposure to the important concepts relating to material properties, such as material strength and material stiffness. Material strength and stiffness are important for the analysis of structures, since the equations of static equilibrium are not enough to determine the distribution of forces within a complex structure. In addition, knowledge of material strength and stiffness is vital for the design of structures, where the size (and corresponding cost) of a component of a structure, such as a beam, depends on both its resistance to excessive deformation (primarily a function of stiffness), and its ability to resist damage (primarily a function of strength).

As we will see, beginning with this outline, two of the most important quantities in structural engineering are "stress" and "strain." The stress and strain of a material are often linearly-related – a discovery that dates back to 1678, when Hooke famously stated "ut tensio, sic vis," meaning, "as the extension, so the force." The larger this ratio, the more stiff the material, and the greater its resistance to deformation. Keeping deformations small is sometimes a constraint in the design of structures.

A constraint that is even more often present in engineering design is to ensure that the material strength, which has units of stress, is not exceeded. Stress demands, unlike strains, are not so easy to "see" or directly measure, but stress is a quantity that engineers like to use for the purpose of comparing to material strength. Designing a structure so that the stress demands in all of its structural components remain less than their corresponding material strength values is one way that an engineer can ensure that the structure is safe to perform its intended function.

Hooke's Law

Normal strain = $\frac{\text{elongation}}{\text{length}} = \frac{\delta}{L} = \epsilon \quad \text{(fraction of change in length)} \quad \text{(no units)}$

- note: As the rod elongates, the area shrinks \Rightarrow the actual stress is slightly larger than that assumed above. Similarly, the actual strain is actually $\frac{\delta}{L+\delta}$, which is slightly smaller than that assumed above.
- Most general form of Hooke's Law: $\sigma = E\epsilon$ where E = modulus of elasticity (material property)
- note: Unless stated otherwise, P is assumed to be an equivalent force through the centroid of A.
- note: As a practical rule, $\sigma = P/A$ may be used with good accuracy at any point within a bar that is at least as far away from the force concentration as the lateral dimension of that bar (d or greater in the picture below).

note: for non-uniform bars, such as the eyebar above, as long as you make sure that failure will occur in the prismatic portion of the beam, it can be analyzed using the normal stress and strain equations above.

stram ɛ

The above picture is a graph of stress versus strain for typical structural steel. We can see that the slope of the curve is E, as one would expect according to the Hooke's Law equation stated above. Many materials obey this linear relationship. In addition, this portion is called the "elastic" portion, because any structure that is stressed within the elastic portion will return to its original state upon release of stress. The "yield stress" as shown on the graph is typically considered the limit of the material. Once the material reaches this stress, it continues to stretch or compress without any further load, and upon release of all load, will only partially return to its original state. This phenomenon is called "yielding." The yield stress value, which is a material property, is typically considered the *strength* of the material. Grade 50 steel, for example, has a yield stress of 50 ksi.

Often, materials are idealized as perfectly "elasto-plastic." As we can see on the diagram above, the steel is perfectly elastic, then perfectly plastic (yielding portion = "plastic" portion). The dotted box in the diagram, which shows the more a smooth transition, is sometimes neglected.

In this chapter, all materials will be assumed linear-elastic.

$$\begin{split} \delta &= \frac{PL}{AE} \quad AE = "axial rigidity"\\ \delta &= fP \quad f = flexibility = \frac{L}{AE} \quad (\frac{length \ change \ produced}{unit \ force})\\ P &= k\delta \quad k = stiffness = \frac{AE}{L} \quad (\frac{force \ required}{unit \ of \ length \ change}) \quad (commonly \ written \ version \ of \ Hooke's \ Law) \end{split}$$

e.g.

- Given: Dimensions of frame shown below. $L_{BD} = 480$ mm, $L_{CE} = 600$ mm, $A_{BD} = 1020$ mm², $A_{CE} = 520$ mm², $E_{steel} = 205$ GPa
- Find: Assuming member ABC to be rigid, find P_{max} if the displacement at point A is limited to 1.0mm.

$$\frac{(\delta_A)_{allowed} + (1.126P_{\max}x10^{-5}mm)}{450mm + 225mm} = \frac{(6.887P_{\max}x10^{-6}mm) + (1.126P_{\max}x10^{-5}mm)}{225mm}$$

substitute $(\delta_A)_{allowed} = 1.0mm$, solve for $P_{max} \Rightarrow P_{max} = 23,200N$

$$\uparrow \sum Fy: N_1 + P_B - P_C - P_D = 0 \Longrightarrow N_1 = P_C + P_D - P_B$$

$$N_2 = N_3 = P_C + P_D \qquad N_4 = P_D$$

$$\delta_1 = \frac{N_1 L_1}{E_1 A_1} \quad \delta_2 = \frac{N_2 L_2}{E_1 A_1} \quad \delta_3 = \frac{N_3 L_3}{E_2 A_2} \quad \delta_4 = \frac{N_4 L_4}{E_2 A_2} \quad \delta_{total} = \sum \delta$$

Deformation of tapered bars in tension

Continuously varying loads or dimensions;

$$d\delta = \frac{N(x)dx}{EA(x)}$$
 $\delta = \int_{0}^{L} \frac{N(x)}{EA(x)} dx$

e.g. 1

Given: Square beam loaded by its own weight. Density = 10 kip/ft, E = 2000ksi (see pic below).

Find: δ

e.g. 1
10 ft
10 ft
10 ft
10 in
Area = 10(10) =
100 in²
Area = 10(10) =
100 kip

$$f_{100}$$
 kip
 f_{100} kip
 f_{1

e.g. 2

Given: Rectangular tapered beam of depth 10 in. loaded by its own weight. Same density and modulus of elasticity material as the above problem.

Find:
$$\delta$$

Density
$$\rho = 10 \frac{kip}{ft} (\frac{1ft}{(12in)(100in^2)}) = \frac{1kip}{120in^3}$$

e.g. 2

d 12 8

Area = $12(10) = 120 \text{ in}^2$

Support reaction:

$$F_{A} = (\frac{120 + 80}{2}in^{2})(10ft)(\frac{12in}{1ft})(\frac{1kip}{120in^{3}}) = 100kip$$
This used the fact that linearly changing area \Rightarrow
volume = (average area)(length)

Area = $8(10) = 80 \text{ in}^2$

$$\begin{array}{c} \begin{array}{c} 1 & (in) \\ 2 \\ 0 \\ 0 \\ \end{array} \end{array} \xrightarrow{100 \text{ kip}} \\ \hline 100 \text{ kip} \\ \hline \\ & \swarrow P \\ \\ & \swarrow P \\ \\ & \swarrow P \\ \\ & & 10 \text{ -y} \end{array}$$

$$A(y) = d(y)*depth = (\frac{12-8}{0-10}y+12)(10) = 120-4y$$

Top piece:

$$+ \sum Fy: 100 - P - (\frac{120 + (120 - 4y)}{2}in^{2})(yft)*(\frac{12in}{1ft})(\frac{1kip}{120in^{3}}) = 0$$

$$\Rightarrow P = \frac{1}{5}(y^{2} - 60y + 500)$$

$$\delta = \int_{0}^{10} \frac{\frac{1}{5}(y^{2} - 60y + 500)}{(120 - 4y)(2000)}dy = .0022ft$$

note: The tapered bar has slightly less elongation than a prismatic bar of equal length and volume.

note: The area must be constant or vary linearly or the problem is more complex. i.e. might be told that the top length of the tapered bar is 12 in and the bottom length is 8 in, and it is a circular cylinder. So, $A = 36\pi$ and 16π respectively.

 $A(y) = \frac{\pi}{4} [d(y)]^2 = \frac{\pi}{4} (\frac{12 - 8}{0 - 10} y + 12)^2$ which is NOT linear. So, finding needed volumes is more complicated.

Simple statically indeterminate system (axial)

The following problems will be our first look at statically indeterminate (redundant) systems, as described in the section titled "A note on redundant systems" in the outline on Statics. By knowing the properties of the materials and Hooke's Law, which essentially relates force and displacement, we now have an additional equation to use for the purpose of finding unknown forces. This is called an equation of compatibility. All we have to do is find a way to relate displacements in members where we have unknown force(s).

Given: Rigid bar of negligible weight rests on top of aluminum and steel beams. Force P acts at the midpoint.

Aluminum beam: diameter $d_A = 1m$, $(\sigma_A)_{allowed} = 80MPa$, $E_A = 70GPa$ Steel beams: diameter $d_S = .5m$, $(\sigma_S)_{allowed} = 220MPa$, $E_S = 210GPa$

3 equations, 3 unknowns F_A , F_S , $P_{max} \rightarrow P_{max} = 144 MN$ (at which point steel yields)

e.g. 2 Given: Force P acts at the end of a rigid, pinned bar. wire 1: $d_1 = 4mm$, $(\sigma_1)_{allowed} = 200MPa$, $E_1 = 72GPa$ wire 2: $d_2 = 3mm$, $(\sigma_2)_{allowed} = 175MPa$, $E_2 = 45GPa$

Find: P_{max}

From
$$\sum M_A = 0$$
, $T_1 = 3P_{\text{max}} - 2T_2$ (2)
From $\sum Fy = 0$, $Ay = T_1 + T_2 - P$ (3)

$$(\sigma_1)_{allowed} = \frac{T_1}{A_1}$$
 (4) and check: $(\sigma_2)_{allowed} \ge \frac{T_2}{A_2}$
OR

$$(\sigma_2)_{allowed} = \frac{T_2}{A_2} (4) \text{ and check: } (\sigma_1)_{allowed} \ge \frac{T_1}{A_1}$$

4 equations, 4 unknowns $T_1, T_2, Ay, P_{max} \rightarrow P_{max} = 1.26 kN$ (at which point wire 2 yields)

Poisson's Ratio

Lateral strain =
$$\frac{\text{change in lateral length}}{\text{initial lateral length}} = \varepsilon'$$
 (no units)

 $\varepsilon' = v\varepsilon$ where v = Poisson's ratio (material property) and recall the definition of ε from the beginning of this chapter

(change in lateral length)=-(initial lateral length)(v)(ε)

note: only applies to isotropic materials (same elastic properties in axial, lateral, or any direction). Concrete and most metals are isotropic. Wood is an example of an anisotropic (non-isotropic) material (it is much tougher against the grain).

e.g. Given: Hollow polymer pipe of length 4 ft, outside diameter $d_2 = 6$ in., inside diameter $d_1 = 4.5$ in., is compressed by 140 kip normal force. E = 3000 ksi, v = .3

Find: Increase in wall thickness Δt .

$$\Delta d_1 = d_1 v \left(\frac{P}{AE}\right) = 4.5(.3) \left(\frac{140}{\pi/4} (6^2 - 4.5^2)(3000)\right) = .00509in$$

$$\Delta d_2 = d_2 v \left(\frac{P}{AE}\right) = 6(.3) \left(\frac{140}{\pi/4} (6^2 - 4.5^2)(3000)\right) = .00679in$$

$$\Delta t = \Delta r_2 - \Delta r_1 = \frac{\Delta d_2 - \Delta d_1}{2} = .00085in$$

note: under compression, outer diameter, inner diameter, and thickness all increase.

note: follow the same process for the lateral elongation (or shortening) for *each* dimension of a rectangular bar.

Torsion

Above is a fixed, prismatic beam subjected to a torque at the right end.

 ϕ_{max} = angle of twist

 ϕ_x depends on distance x from the wall

 $\gamma_{\rm p}$ depends on distance p from the center

Assume distance bb' is very small and so the arc length bb' is approximately equal to a straight line bb'.

$$\phi_{\text{max}} = [\text{fraction of arc length change}](2\pi \text{ radians}) = [\frac{bb'}{2\pi r}](2\pi) = \frac{bb'}{r}$$

$$\gamma_{\text{max}} = [\frac{bb'}{2\pi(ab)}](2\pi) = \frac{bb'}{ab}$$
We can see that $\gamma_{\text{max}} = \frac{r\phi_{\text{max}}}{L}$ is really the same expression as above.
Also, $\gamma_p = \frac{p}{r}\gamma_{\text{max}} = p\frac{\phi_{\text{max}}}{L}$
 $\tau = G\gamma$

$$\tau_{\max} = G\gamma_{\max} = Gr\frac{\phi_{\max}}{L}$$
 $\tau_p = \frac{p}{r}\tau_{\max} = Gp\frac{\phi_{\max}}{L}$

We need to find a relationship between τ and T:

$$T = \int_{A} \tau_{p} p \, dA = \int_{A} (\frac{\tau_{max}}{r} p) p \, dA$$

If polar moment of inertia = I_p = $\int_{A} p^{2} dA$, then:

 $T = \frac{\tau_{max}}{r} I_p \Rightarrow \tau_{max} = \frac{Tr}{I_p} \rightarrow \text{general formula for a circular shaft subjected to torsion}$

$$\phi_{\max} = \frac{\tau_{\max}L}{Gr} = \frac{IL}{GI_p} \qquad \gamma_{\max} = \frac{r\phi_{\max}}{L} = \frac{\tau_{\max}}{G} = \frac{Ir}{GI_p}$$

 ϕ_{max} is often just written ϕ

note:
$$\phi_x = \frac{x}{L} \phi_{max} = \frac{\tau_{max} x}{Gr}$$
 (also note similarity of ϕ_{max} above to $\delta = \frac{PL}{EA}$)

Solid Bar:

$$T = \frac{\tau_{max}}{r} \int_{\phi=0}^{2\pi} \int_{p=0}^{r} p^2 p \, dp \, d\theta = \left(\frac{\tau_{max}}{r}\right) \frac{\pi r^4}{2} = \frac{\tau_{max} \pi d^3}{16} \Longrightarrow$$
$$\tau_{max} = \frac{16T}{\pi d^3} \text{ (solid shaft)}$$

note: recall from calculus that the extra p in the integrand is just an extra polar integration factor

Hollow Tube:

$$T = \frac{\tau_{max}}{r} \int_{\theta=0}^{2\pi} \int_{p=r_{1}}^{r_{2}} p^{2}p \, dp \, d\theta = (\frac{\tau_{max}}{r}) \frac{\pi}{2} (r_{2}^{4} - r_{1}^{4}) = (\frac{\tau_{max}}{2}) \frac{\pi}{32} (d_{2}^{4} - d_{1}^{4}) \Longrightarrow$$

$$\tau_{max} = \frac{16Td_{2}}{\pi (d_{2}^{4} - d_{1}^{4})} \quad \text{(tube)}$$

e.g. 1

Given: Socket wrench transmits torque to a stuck bolt.

 $\tau_{allowable} = 460MPa$ G = 78GPa for the 8mm diameter, solid shaft shown Find: T_{max} and ϕ_{max} for this allowable torque value

$$\tau_{max} = \frac{16T}{\pi d^3} \quad T_{max} = \frac{(\tau_{allowable})\pi(8x10^{-3})^3}{16} = 46.25N*m \quad (F_{max} = \frac{T_{max}}{d})$$

$$\phi = \frac{\tau_{max}L}{Gr} = \frac{(\tau_{allowable})(200x10^{-3})}{(78x10^9)(\frac{8}{2}x10^{-3})} = .29 \, Rad \quad or \, (.29 \, Rad)(\frac{180^\circ}{\pi \, Rad}) = 16.6^\circ$$

e.g. 2

Given: Either a solid or a hollow steel shaft is to be manufactured, $T_{max} = 1200N * m$ $\tau_{allowable} = 40MPa$ Thickness of hollow shaft = .1 d₂

Find: $(d_0)_{min}, (d_2)_{min}$, and the ratio of material usage for the hollow shaft versus the solid shaft.

Since both shafts are the same density and length, the ratio of weights = the ratio of volumes = the ratio of areas:

$$\frac{A_{hollow}}{A_{solid}} = \frac{\pi/4 (d_2^2 - d_1^2)}{\pi/4 d_0^2} = .47$$

The hollow shaft has a larger diameter, but only uses 47% as much material as the solid shaft. Hollow shafts are more efficient.

$$\phi_{1} = \frac{T_{1}L_{1}}{G_{1}I_{p1}} \quad \phi_{2} = \frac{T_{2}L_{2}}{G_{1}I_{p1}} \quad \phi_{3} = \frac{T_{3}L_{3}}{G_{2}I_{p2}} \quad \phi_{4} = \frac{T_{4}L_{4}}{G_{2}I_{p2}}$$
$$\phi_{total} = \sum \phi$$

 T_1, T_2, T_3, T_4 are the internal torques within sections L_1, L_2, L_3, L_4 , respectively, which can be found from drawing free body diagrams as was done for the axial case in the previous section on Hooke's Law.

Deformation of tapered bars in torsion

Continuously varying torques/dimensions;

$$d\phi = \frac{T(x) d(x)}{GI_{p}(x)} \quad \phi = \int_{0}^{L} \frac{T(x)}{GI_{p}(x)} dx$$

note: satisfactory as long as angle of taper is less than 10°

- $I_{p}(x)$ determined from d(x), where d is the diameter
- note: A shaft in torsion has a normal stress. If $\sigma_{allowable}$ for a material is equal to, or less than $\tau_{allowable}$, then the design for the shaft in torsion is controlled by σ . And, it will fail along a 45° axis. (proof section on Mohr's Circle later in this chapter) (e.g. chalk)
- note: Similarly, a member under axial load has a shear stress. If $\tau_{allowable}$ for a material is equal to, or less than $\frac{1}{2}(\sigma_{allowable})$, then the design for the axially loaded member is controlled by τ . And, it will fail along a 45° axis. (proof-section on Mohr's Circle) (e.g. concrete)

Simple statically indeterminate system (torsion)

e.g.

Given: Circular bar with fixed (rigid) ends shown. Find: Support reactions and ϕ_{max} .

e.g. A T_{0} T_{0} T_{0} T_{0} T_{0} T_{0} T_{1} T_{A} T_{1} T_{1} T_{2} T_{2} T_{1} T_{2} $T_$

$$\xrightarrow{+} \sum \frac{-(T_A)^{3L}/10}{GI_p} + \frac{(T_0 - T_A)^{3L}/10}{GI_p} + \frac{(3T_0 - T_A)^{4L}/10}{GI_p} = 0$$

(eq of compatibility)

note: Direction of ϕ for each segment should be consistent with the direction of torques on free-body diagrams for each segment. Incorrect guess will simply result in negative values for ϕ .

note: As always with design, the allowable stress (τ_{allow}) and the force (T) are known, and we want to minimize the area A. Axial, bearing, and direct shear stresses are related to A, so we can easily minimize A. Shear stress for a solid shaft in torsion is not related to A, but it is related to d, so we can easily minimize A. The stress for a hollow tube in torsion, however, is not related to A and it depends on more than one dimension (d₁ and d₂). There are thus three unknowns (d₁, d₂, and A) and two

equations
$$(A = \frac{\pi}{4}(d_2^2 - d_1^2), \tau_{allow} = \frac{16Td_2}{\pi(d_2^4 - d_1^4)})$$
. One might be tempted to use

 $\frac{dA}{dx} = 0$ for a third equation, but there is no local minimum. It turns out, not surprisingly, that $A \rightarrow 0$ as $d_2 \rightarrow \infty$ and $d_1 \rightarrow d_2$. The best method, for this particular case, would be to use a table of common tube sizes and pick the tube with the smallest area in which $\tau \le \tau_{allow}$. In engineering practice, methods that utilize tables are often used, particularly for the selection of timber and steel section sizes for flexure, which we will learn about next.

The following derivation will assume "pure bending" (bending moment is constant/shear force V = 0) and prismatic material. Longitudinal lines in the lower part of the beam are elongated (T) while those in the upper part are shortened (C). Somewhere between the top and bottom of the beam is a longitudinal surface in which there is no

length change. This surface is the neutral surface. It passes through the centroid of the cross-sectional area, assuming that the cross sectional area is symmetrical about the xy plane and load resultants act in this plane.

note: for negative bending moment, the arrows are reversed (compression on bottom, tension on top)

 $\rho = \text{radius of curvature}$ $\text{curvature} = \kappa = \frac{1}{\rho}$ If the flexure is small, ρ is large and κ is small. $\frac{\text{ds}}{2\pi\rho}(2\pi) = \text{d}\theta \text{ where } \frac{\text{ds}}{2\pi\rho} \text{ is the fraction of arc}$ $\text{length change, and } 2\pi \text{ radians} = 360^{\circ}.$ So, $\rho \text{d}\theta = \text{ds}$ $\kappa = \frac{\text{d}\theta}{\text{ds}}$ we deal with *very* small flexure, so $\kappa \approx \frac{\text{d}\theta}{\text{dx}}$ (θ in radians) Now we're ready to find stress, strain, curvature, and deflection, in terms of bending moment. Deflection (at midpoint) = $\delta = \rho - \rho \cos(\frac{\text{d}\theta}{2})$ $\Gamma^{z} = \text{d}\theta = \frac{\text{ds}}{\rho} \approx \frac{L}{\rho}$ $\delta = \rho - \rho \cos(\frac{L}{2\rho})$

An arbitrary line of above the x axis will shorten. Its original length = dx and its final length =

$$(\rho - y)d\theta \approx (\rho - y)(\frac{dx}{\rho}) = dx - \frac{y}{\rho}dx$$

longitudinal strain = $\frac{\text{longit length change}}{\text{original length}} = \epsilon$

$$=\frac{(dx - \frac{y}{\rho}dx) - dx}{dx} = \frac{-y}{\rho} \qquad \varepsilon = \frac{-y}{\rho} = -\kappa y$$
$$\sigma = E\varepsilon = \frac{-E}{\rho} = -E \kappa y$$

Need to find a relationship between σ or κ and M :

$$M = \int_{A} (\frac{\text{force}}{\text{area}})(\text{dist})(\text{area}) = -\int_{A} \sigma y \, dA = \int_{A} \kappa E y^2 \, dA \quad \text{If area moment of inertia} = I = \int_{A} y^2 \, dA, \text{ then } \kappa = \frac{M}{EI} \quad \delta = \frac{EI}{M} - \frac{EI}{M} \cos(\frac{ML}{2EI}) \quad \varepsilon = \frac{-M}{EI} y \text{ note: } I \neq I_p$$
$$\sigma = -E(\frac{M}{EI})y = -\frac{My}{I} \text{ maximum tensile and compressive bending stresses occur at points located farthest from the neutral axis.}$$
$$(\sigma_1)_{max} = \frac{-Mc_1}{I} \quad (\sigma_2)_{max} = \frac{Mc_2}{I}$$

For positive M, σ_1 is compressive, σ_2 is tensile. For negative M, σ_1 is tensile, σ_2 is compressive. So, there are up to four strength conditions to check to determine σ_{max} for a given prismatic beam.

- see next example for center of mass and I calculation of an odd shape.

Rectangular cross-sect:
$$I = \frac{bh^3}{12}$$

Circular cross-sect: $I = \frac{\pi d}{64}$

The "wide-flange" shape to the left approaches the ideal crosssect shape for a beam of given area and height. The narrowness of the web is limited only by the shear stress.

note: small deflections only

note: these equations apply for cantilevered beams too

note: bending stress is \underline{NOT} significantly altered by the presence of shear stresses, so -My

$$\sigma = \frac{-m_y}{I}$$
 can be used for non-uniform bending with M_{max} yielding σ_{max} .

e.g. 1 Given: Beam with uniform cross-section shown and uniform load.

e.g. 2 Given: Beam cross section. Find: c_1, c_2, I

choose z' at bottom (
$$\overline{y} = c_2$$
):

$$\overline{y} = \frac{\sum A_i d_i}{\sum A_i} = \frac{(200)(100)(50) + [(200)(200) - \frac{\pi}{4}(120)^2](200)}{(300)(200) - \frac{\pi}{4}(120)^2}$$

= 138.39mm where (200)(100) is the area of the lower third and (200)(200) $-\frac{\pi}{4}(120)^2$ is the area of the upper twothirds.

note: The upper two-thirds has height of 200mm. Looking at the dimensions on the figure, we can see that there is a height of 40mm above and 40mm below the cut-out circle within this upper two-thirds block.

This symmetry explains why the last term in the numerator, d_i , is 200 (goes from z' to the midpoint of the circle).

OR

$$\overline{y} = \frac{(300)(200)(150) - \frac{\pi}{4}(120)^2(200)}{(300)(200) - \frac{\pi}{4}(120)^2} = 138.39mm$$

where (300)(200) is the area of the solid rectangle and $\frac{\pi}{4}(120)^2$ is the area of the circle.

$$(I_{rect})_{z} = \frac{1}{12}(200)(300)^{3} + (300)(200)(11.61)^{2}$$
$$(I_{circ})_{z} = \frac{\pi}{64}(120)^{4} + \frac{\pi}{4}(120)^{2}(61.61)^{2}$$
$$I_{z} = (I_{rect})_{z} - (I_{circ})_{z} = 4.908 \times 10^{8} \text{ mm}^{4}$$

Bending stress design examples

Bending stress is not related to area and depends on more than one dimension (usually). It turns out, not surprisingly, that for a rectangular section in bending, $A \rightarrow 0$ as $h \rightarrow \infty$

and $b \rightarrow 0$. This is not surprising since we know that sections such as the wide-flange section, with the majority of material away from the neutral axis, are most cost effective. Design is best done using tables of common sections.

Often $\frac{1}{c_1}$ and $\frac{1}{c_2}$ are written as S_1 and S_2 , where S = "section modulus." This simplifies the use of tables.

e.g. 1 Given: Wood beam with rectangular cross-sect, is subjected to the load shown. density

$$= 35 \frac{lb}{ft^3} \quad \sigma_{allow} = 1800 \, psi$$

Find: Suitable size beam (base x height) from appendix A.

h b (cross-section) From Appendix A, choose the lightest (smallest cross-sect area) beam that has a section modulus S of at least $50.40 \rightarrow$ choose 3"x12". (3"x12" nominal dimensions, 2.5"x11.25" actual dimensions, s=52.73 in³) But we still have to include the beam's own weight:

Beam weight = (area)(density) = $\left(\frac{2.5in}{12in/ft} \times \frac{11.25in}{12in/ft}\right) (35lb/ft^3) = 6.8lb/ft$

$$S = \frac{90,720 + \frac{(6.8)(12)^2(12)}{8}}{1800} = 51.22in^3 \text{ or } S = (50.40)(\frac{426.8}{420}) = 51.22in^3$$

This is still smaller than the section modulus for the 3×12 in. beam, so that size is satisfactory.

note: If $c_1 \neq c_2$, then the problem is more complicated, but still follows the same basic process.

note: We have ignored the phenomenon known as "lateral torsional buckling", which will be emphasized in the outline on steel design later on.

e.g. 2

Given: beam supports the two-wheeled vehicle shown. It may occupy any position on the beam. $\sigma_{allow} = 21.4ksi$ Find: M_{max} and the corresponding S_{min} .

$$M_{max} = M(z+60) = -\frac{1}{48}(z+60)(-114+z) + 3z \qquad z \in [0, 288-60]$$

$$\Rightarrow z_{max} = 99in, M_{max} = 346.7 kip * in \qquad S_{min} = \frac{346.7}{21.4} = 16.2in^{3}$$

note: could then use a table to choose an efficient beam size.

Tapered beams

To really minimize the amount of material, the cross-sect dimensions can be varied so as to develop the maximum allowable bending stress at every section.

e.g.

Given: cantilevered beam with point load shown. Find: h_x so that $\sigma = \sigma_{allow}$ at every cross-section.

Shear

Shear deformation

If a shear force τ acts on the upper face, each side must have an equal shear force (in the directions shown) for equilibrium.

The shear forces create a distortion as shown. γ is called the shear strain (radians).

Shear stress – strain diagrams appear similar to the axial diagram that was shown at the beginning of this chapter.

 $\tau = G\gamma$ where G = Shear Modulus of Elasticity (material property)

note:
$$G = \frac{E}{2(1+\nu)}$$
 (skipped proof)

e.g.

Given: "bearing pad" with dimensions shown, subjected to force shown. Find: τ , γ , and d.

Shear stress in flexure

h

From equilibrium of shear, the shear stress in the vertical direction is matched with an equal shear stress in the horizontal direction. And, from equilibrium of force in the x direction,

$$(\tau_{y})^{*}[t(y)dx] = \int_{A} \left[\frac{(M+dM)y}{I}\right](dA)$$
$$-\int_{A} \left[\frac{My}{I}\right](dA)$$

The units match, since we have: $(F_A)*[A] = [F_A](A) - [F_A](A)$

The area A is the area shaded, <u>not</u> the entire cross-sectional area.

$$\tau_{y} = \frac{dM}{dx} \frac{1}{I * t(y)} \int_{A} y dA$$

$$\tau_{y} = \frac{VQ_{y}}{I * t(y)} \text{ (General Formula)} \quad \text{where } Q = \text{"first moment"} = \int_{A} y dA$$

note: In pure bending, V = 0, so $\tau = 0$. Also, M + dM = M in that case, so $\tau = 0$. For rectangular cross-sect, t(y) = b (base) and $Q_y = \frac{b}{2}(\frac{h^2}{4} - y^2)$

$$\tau_y = \frac{3V(h^2 - 4y^2)}{2bh^3}$$
 (rect cross-sect) (skipped work)

 τ_{max} occurs at y=0, which is the neutral axis.

$$\tau_{max} = \frac{3V}{2A}$$
 (rect cross-sect) A=bh

- note: Although τ was calculated as being horizontal, there *must be* vertical shear that is equal, so V_{max} is determined from the SFD. Area A is always the cross-sectional area.
- note: Now it is possible to optimize the bending stress for a rect sect, although designers still usually use tables.
- e.g. Given: Wood beam with rectangular cross-sect, is subjected to load shown. $\tau_{allow} = 200 \, psi, \, \sigma_{allow} = 1800 \, psi$

Find: Optimal beam size (assume beam weight already included in load q).

$$h=16", b=1.21" (A_{min} = bh = 19.35in^2)$$

note: h >> b, as expected.

note: (compare to e.g. 1 of the "Bending stress design examples" section) Even though an overly large allowance for the beam's own weight was provided, and very small τ_{allow} , this beam was still about 2/3 the weight of the beam chosen in e.g. 1. Of course, this is also largely due to the limited selection of available beams in the Appendix A.

For circular cross-sect, τ is complicated away from the neutral axis. But, we can still find τ_{max} which has been proven experimentally to be located at the neutral axis:

$$t(0) = d \text{ (diameter) and } Q_0 = \frac{1}{12}d^3$$

$$\tau_{max} = \frac{4V}{3A} \text{ (solid shaft) (skipped work) } A = \pi r^2$$

$$\tau_{max} = \frac{4V}{3A} (\frac{r_2^2 + r_2 r_1 + r_1^2}{r_2^2 + r_1^2}) \text{ (hollow tube) } A = \pi (r_2^2 - r_1^2)$$

note: Just like a rect sect, it is now possible to optimize a tubular section, although the use of a table is more practical. Just make sure $\tau \le \tau_{max}$ after a size with appropriate section modulus has been chosen from the table.

Wide-flange cross section:

Although the *resultant* forces are located in the xy plane, there are forces distributed all over the upper flange. This creates a bending moment in the flange about the x axis and accompanying bending stresses and horizontal shear stresses. The web has only vertical shear stresses which can easily be determined. For the web, t(y) = t (web

thickness) and
$$Q_y = \frac{b}{8}(h^2 - h_1^2) + \frac{t}{8}(h_1^2 - 4y^2)$$
,

$$I = \frac{1}{12} (bh^{3} - bh_{1}^{3} + th_{1}^{3}).$$

cross-sect view

- see next example for Q calculation of odd shape.

$$\tau_{y} = \frac{3V[b(h^{2} - h_{1}^{2}) + t(h_{1}^{2} - 4y^{2})]}{2t(bh^{3} - bh_{1}^{3} + th_{1}^{3})}$$
 (wide-flange beam)
(skipped work)

 τ_{max} occurs at the neutral axis

$$\tau_{\max} = \frac{3V(bh^2 - bh_1^2 + th_1^2)}{2t(bh^3 - bh_1^3 + th_1^3)}$$

note: a typical wide-flange beam design would be to design for σ_{allow} from a table, and

then check $\tau \leq \tau_{allow}$.

x 7

$$\tau_{ave} = \frac{V}{th_1}$$
 and in this case is close to τ_{max} (within 10% plus or minus), so τ_{ave} is

sometimes used in practice. We will learn methods for calculating shear, which are more often used in practice, in later chapters on concrete design and steel design.

note: τ_{ave} was also used in the design of bolted connections in chapter 1.

e.g.

Given: Location of neutral axis. $I = 69.65 in^4$, $V_{max} = 10,000 lb$. Find: τ_{max} in web.

First moment from $Q_y = \sum A_i d_i$ $A_i = \text{area a distance} \ge y \text{ away from neutral axis.}$ $d_i = \text{distance from } A_i (A_i \text{ neutral axis}) \text{ to } z.$

Choose y in web <u>above</u> neutral axis: $Q_y = (1x(7-4.955-y)[y+\frac{1}{2}(7-4.955-y)] + (1x4)[\frac{1}{2}+(7-4.955)] = 12.3-\frac{1}{2}y^2$ where 1x(7-4.955-y) is the shaded area at the

where 1x(7-4.955-y) is the shaded area at the top of the web, and (1x4) is the flange area.

OR

Choose y in web below neutral axis:

$$Q_y = [1x(4.955 - y)][y + \frac{1}{2}(4.955 - y)] = 12.3 - \frac{1}{2}y^2$$

as expected, where [1x(4.955 - y)] is the shaded area at the bottom of the web. Q_{max} occurs when y = 0. Since t(y) is constant, τ_{max} also occurs when y = 0 (a.k.a. the neutral axis z)

$$\tau_{max} = \frac{VQ}{It} = \frac{10000(12.3)}{69.65(1)} = 1.8ksi$$

note: τ_{max} occurs at the neutral axis for almost <u>any</u> cross-section.

Shear flow

Shear flow = $q_y = \tau * t(y)$ or $q_y = \frac{VQ_y}{I} (\frac{\text{force}}{\text{dist}})$ where y is the distance at which there is to be nailing or welding. Q would typically be found after a beam size has been chosen. The strength of a weld is usually specified in terms of force per unit distance, as we will see later on in the outline on steel design. So, the required weld strength = q (or $\frac{q}{2}$ for the picture shown below). Nail and screw strength is usually specified in units of force F. Nail spacing = $s = \frac{F}{q}$, where F (allowable force of the screw or nail) can be looked up for a given nail type.

(about the z axis) can be used). Since shear *flow* does not depend on thickness, there is no difference in q. Q would be integrated over the shaded region above.

e.g.

Given: Box beam shown subjected to shear force V = 10.5 kN. Allowable screw force (shear force for screw) F = 800 N. Find: Screw spacing s.

Principal stresses

Stresses are positive if <u>positive</u> face - <u>positive</u> direction or <u>negative</u> face - <u>negative</u> direction.

(All stresses shown are positive with respect to these axes)

$$\cos \theta_1 = \frac{A_0}{A_2} \Longrightarrow A_2 = A_0 \sec \theta_1$$
$$\tan \theta_1 = \frac{A_1}{A_0} \Longrightarrow A_1 = A_0 \tan \theta_1$$

From
$$\sum F_x = 0$$
 and $\sum F_y = 0$,
 $\sigma_{x1x1} = \frac{\sigma_{xx} + \sigma_{yy}}{2} + \frac{\sigma_{xx} - \sigma_{yy}}{2} \cos 2\theta_1 + \tau_{xy} \sin 2\theta_1$
 $\tau_{x1y1} = \frac{-(\sigma_{xx} - \sigma_{yy})}{2} \sin 2\theta_1 + \tau_{xy} \cos 2\theta_1$
 $\theta_1 \in [0^\circ, 180^\circ]$

These are the "transformation equations" for plane stress. σ_{max} and τ_{max} from these equations are the <u>true</u> maximum stresses in a beam (except for the special case where they occur out-of-plane). σ_{max} and τ_{max} may occur at a location of $(\sigma_{xx})_{max}$, $(\sigma_{yy})_{max}$, $(\tau_{xy})_{max}$, or may occur at a location where none of the above are maximized.

- note: σ_{yy} for a given region in a beam is the distributed load q divided by the cross-sect thickness t at that location.
- note: σ_{yy} usually compressive (negative in the above equations) since our distributed loads act downward. σ_{xx} direction determined from bending stress and external axial load $(\frac{P}{A} + \frac{My}{I})$. τ direction determined from inspection of the internal vertical equilibrium (NOT SFD) (see below).

note: The beams of chapter five usually contain all three forces. Since σ_{yy} depends on x (distance along beam) and y (in relation to neutral axis), σ_{xx} depends on x and y, τ_{xy} depends on x and y, and θ_1 also varies between 0 and 180°, finding the exact location and angle of σ_{max} and τ_{max} can usually only be approached through trial and error using the transformation equations. For design, transformation equations are accounted for in the safety factor, but can be checked as follows.

Principal Angles

The following is useful assuming that a location O within a beam has been chosen and τ_{xy} , σ_{xx} , σ_{yy} are known.

From $\frac{d\sigma_{x1x1}}{d\theta_1} = 0$, $\tan 2(\theta_p) = \frac{2\tau_{xy}}{\sigma_{xx} - \sigma_{yy}}$ (critical angles for normal – "principal stress") Two solutions: $\theta_p \in [0, 90^\circ]$ and $\theta_p \in [90, 180^\circ]$ which correspond to θ_{p1} and θ_{p2} though not necessarily in that order. θ_{p1} and θ_{p2} differ by 90°.

$$\sigma_{xp1xp1} = (\sigma_{x1x1})_{max} = \frac{\sigma_{xx} + \sigma_{yy}}{2} + \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \tau_{xy}^2} \text{ (skipped work)}$$

$$\sigma_{xp2xp2} = (\sigma_{x1x1})_{min} = \frac{\sigma_{xx} + \sigma_{yy}}{2} - \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \tau_{xy}^2}$$

(could be greater <u>magnitude</u> than $(\sigma_{x1x1})_{max}$)

note: $\tau_{xp1xp1} = \tau_{xp2xp2} = 0$ (proof Mohr's Circle – see next section) note: The true min and max normal stress <u>could</u> be located "out-of-plane" (not calculated) From $\frac{d\tau_{x1y1}}{d\theta_1} = 0$, $\tan 2(\theta_s) = \frac{-(\sigma_{xx} - \sigma_{yy})}{2\tau_{xy}}$ (critical angles for shear stress)

Two solutions: $\theta_s \epsilon [0, 90^\circ]$ and $\theta_s \epsilon [90, 180^\circ]$ which correspond to θ_{s1} and θ_{s2} though not necessarily in that order. θ_{s1} and θ_{s2} differ by 90°.

$$\tau_{xs1ys1} = (\tau_{x1y1})_{max} = \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \tau_{xy}^2} \quad OR \quad \frac{\sigma_{xp1xp1} - \sigma_{xp2xp2}}{2}$$

$$\tau_{xs2ys2} = (\tau_{x1y1})_{min} = -(\tau_{x1y1})_{max}$$

note: $\sigma_{ave} = \frac{\sigma_{xx} + \sigma_{yy}}{2} = \sigma_{xs_1xs_1} = \sigma_{xs_2xs_2}$ (Proof Mohr's Circle – see next section) note: $\theta_{s1} = \theta_{p1} - 45^\circ$ (Proof Mohr's Circle) note: The true min and max shear stress is located out-of-plane if $\sigma_{xp_1xp_1}$ and $\sigma_{xp_2xp_2}$ have

the same sign:
$$[(\tau_{\max/\min})_{about xp1} = \pm \frac{\sigma_{xp2xp2}}{2} \text{ and } (\tau_{\max/\min})_{about xp2} = \pm \frac{\sigma_{xp1xp1}}{2}].$$

e.g. Given: $\sigma_{xx} = 12300 \, psi$ $\sigma_{yy} = -4200 \, psi$ $\tau_{xy} = -4700 \, psi$ Find: $\sigma_{xp1xp1}, \sigma_{xp2xp2}, \tau_{xs1ys1}, \tau_{xs2ys2}$

in terms of x_{s1}, x_{s2}

wheck:
$$\pm \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \tau_{xy}^2} = \pm 9490$$

note: $\theta_{s1} = \theta_{p1} - 45^\circ = 165.2^\circ - 45^\circ = 120.2^\circ$ note: $\tau_{xs1ys1} = -\tau_{xs2ys2} = \frac{\sigma_{xp1xp1} - \sigma_{xp2xp2}}{2} = \frac{13540 - (-5440)}{2} = 9490$ note: $\tau_{xp1yp1} = \tau_{xp2yp2} = 0$ and $\sigma_{xs1xs1} = \sigma_{xs2xs2} = \sigma_{ave}$ could also be shown easily

Mohr's Circle

 $\sigma_{x1x1} = \frac{\sigma_{xx} + \sigma_{yy}}{2} + \frac{\sigma_{xx} - \sigma_{yy}}{2} \cos 2\theta_1 + \tau_{xy} \sin 2\theta_1$ and $\tau_{x1y1} = \frac{-(\sigma_{xx} - \sigma_{yy})}{2} \sin 2\theta_1 + \tau_{xy} \cos 2\theta_1$ are the permetric equations of a size is

are the parametric equations of a circle.

Manipulation: Bring $\frac{\sigma_{xx} + \sigma_{yy}}{2}$ to the left side of the top equation, square both sides of the equation, and then add the two equations;

 $(\sigma_{x1x1} - \sigma_{ave})^2 + \tau_{x1y1}^2 = R^2 \Rightarrow R = \sqrt{(\frac{\sigma_{xx} - \sigma_{yy}}{2})^2 + \tau_{xy}^2}$ is the algebraic equation of a circle.

Knowing $\sigma_{xx}, \sigma_{yy}, \tau_{xy}$:

- we can now find τ_{x1y1} <u>directly</u> from σ_{x1x1} without knowing θ (and vice-versa).
- we can construct the circle with an accurate scale and immediately see all values of τ_{x1y1} and σ_{x1x1} and their corresponding θ_1 (by measuring $2\theta_1$ with a protractor).

If we know the stresses $\sigma_{x_1x_1}$, $\sigma_{y_1y_1}$, and $\tau_{x_1y_1}$, at a known angle θ_1 , we can construct the circle first in terms of these stresses and then move <u>clockwise</u> $2\theta_1$ for σ_{xx} , σ_{yy} , and τ_{xy} .

e.g.

Given: $\sigma_{xx} = 12300 \, psi \ \sigma_{yy} = -4200 \, psi \ \tau_{xy} = -4700 \, psi$ Find: $\theta_{p1}, \theta_{p2}, \theta_{s1}, \theta_{s2}, \sigma_{xp1xp1}, \sigma_{xp2xp2}, \tau_{xs1ys1}, \tau_{xs2ys2}$ AND stresses at $\theta_1 = 45^{\circ}$

(not to scale)

12300-4050=8250

$$\sigma_{xp2xp2} = \sigma_{ave} - R = -5440 \text{ psi}$$

$$2\theta_{p1} = 360 - 29.7 = 330.3^{\circ} \quad \theta_{p1} = 165.2^{\circ}$$

$$\sigma_{xp1xp1} = \sigma_{ave} + R = 13540 \text{ psi}$$

$$2\theta_{s2} = 90 - 29.7 = 60.3^{\circ} \quad \theta_{s2} = 30.2^{\circ}$$

$$\tau_{xs2ys2} = -R = -9490 \text{ psi}$$

$$2\theta_{s1} = 270 - 29.7 = 240.3^{\circ} \quad \theta_{s1} = 120.2^{\circ}$$

$$\tau_{xs1ys1} = R = 9490 \text{ psi}$$

$$\tau_{x1y1} = -9490 \sin 60.3^{\circ} = -8245 \text{ psi}$$

$$\sigma_{x1x1} = 4045 - 9490 \cos 60.3^{\circ} = -660 \text{ psi}$$

- compare solutions with the previous example

Beam deflections and rotations

q, V, M should be non-zero constant, or functions of x (If non-prismatic beam, then I also depends on x)

note: small deflections only

Solving the second-order bending moment equation EIv''=M, yields two constants of integration (for each segment of a beam). We need two sets of initial conditions (for each segment). There are always enough to choose from, if the system is statically determinate:

- continuity conditions:

•
$$\upsilon(C^-) = \upsilon(C^+)$$

•
$$\upsilon'(C^-) = \upsilon'(C^+)$$

- symmetry conditions: none

Cantilevered beam shown: boundary conditions: В -А |C|v(A) = 0• $\upsilon'(A) = 0$ • continuity conditions: А _ $\upsilon(C^{-}) = \upsilon(C^{+})$ • C в $\upsilon'(C^-) = \upsilon'(C^+)$ • symmetry conditions: -

e.g. 1 Find: Deflection curve $\upsilon, \delta_{max}, \theta_{max}$.

e.g. 1

$$M = \frac{qL}{2}(x) - qx(\frac{x}{2}) = \frac{qLx}{2} - \frac{qx^2}{2}$$
 (skipped work)

$$M = \frac{qL}{2}(x) - qx(\frac{x}{2}) = \frac{qLx}{2} - \frac{qx^2}{2}$$

$$EI \int v' dx = EIv' = \int \frac{qLx}{2} dx - \int \frac{qx^2}{2} dx$$

$$= \frac{qLx^2}{4} - \frac{qx^3}{6} + C_1$$

$$EI \int v' dx = EIv = \frac{qLx^3}{12} - \frac{qx^4}{24} + C_1 x + C_2$$
symmetry condition: $v'(\frac{L}{2}) = 0$

$$0 = \frac{qL}{4}(\frac{L}{2})^2 - \frac{q}{6}(\frac{L}{2})^3 + C_1 \Rightarrow C_1 = -\frac{qL^3}{24}$$

$$EIv = \frac{qLx^3}{12} - \frac{qx^4}{24} - \frac{qL^3x}{24} + C_2$$
boundary condition: $v(L) = 0$ or $v(0) = 0$

$$C_2 = 0$$

$$v = -\frac{qx}{24EI}(L^3 - 2Lx^2 + x^3)$$

$$\delta_{max}$$
 located at $v' = 0$

$$\frac{qLx^2}{4} - \frac{qx^3}{6} - \frac{qL^3}{24} = 0 \Rightarrow x = \frac{L}{2} \text{ as expected}$$

$$\delta_{max} = \upsilon(\frac{L}{2}) = \frac{5qL^4}{384EI} \quad \theta_{max} \text{ located at } \upsilon'' = 0$$

$$\frac{qLx}{2} - \frac{qx^2}{2} = 0 \Rightarrow x = 0 \text{ or } L \text{ as expected}$$

$$\theta_{max} = \upsilon'(L) = |\upsilon'(0)| = \frac{qL^3}{24EI}$$

e.g. 2
Find:
$$\upsilon_1 \varepsilon 0 \le x \le a^-$$
, $\upsilon_2 \varepsilon a^+ \le x \le L$, θ_1 , θ_2 , δ_{max}

e.g. 2
P

$$A = \frac{P}{L}$$

 $A = \frac{P}{L}$
 $A = \frac{P}{L}$ (skipped work)
 $a^{+} \le x \le L : M = \frac{Pbx}{L} - P(x-a)$ (skipped work)
 $a^{+} \le x \le L : M = \frac{Pbx}{L} - P(x-a)$ (skipped work)
 $EIv_{1}'' = \frac{Pbx}{L}$
 $EIv_{2}'' = \frac{Pbx}{L} - P(x-a)$
 $EIv_{1}' = \frac{Pbx^{2}}{2L} + C_{1}$
 $EIv_{2}' = \frac{Pbx^{2}}{2L} - \frac{P(x-a)^{2}}{2} + C_{2}$
 $EIv_{1} = \frac{Pbx^{3}}{6L} + C_{1}x + C_{3}$
 $EIv_{2} = \frac{Pbx^{3}}{6L} - \frac{P(x-a)^{2}}{6} + C_{2}x + C_{4}$
continuity condition: $v_{1}'(a^{-}) = v_{2}'(a^{+})$
 $\frac{Pba^{2}}{2L} + C_{1} = \frac{Pba^{2}}{2L} - \frac{P(a-a)^{2}}{2} + C_{2}$ cancelling terms $\Rightarrow C_{1} = C_{2}$
continuity condition: $v_{1}(a^{-}) = v_{2}(a^{+})$
 $\frac{Pba^{3}}{6L} + C_{1}a + C_{3} = \frac{Pba^{3}}{6L} - \frac{P(a-a)^{3}}{6} + C_{2}a + C_{4}$ cancelling terms $\Rightarrow C_{3} = C_{4}$
boundary condition: $v_{1}(0) = 0$
 $0 = \frac{Pb(0)^{3}}{6L} + C_{1}(0) + C_{3} \Rightarrow C_{3} = 0$
boundary condition: $v_{2}(L) = 0$
 $0 = \frac{Pb(L)^{3}}{6L} - \frac{P(L-a)^{3}}{6} + C_{2}L + C_{4}$ $C_{4} = 0 \Rightarrow C_{2} = \frac{-Pb(L^{2}-b^{2})}{6L}$

$$0 \le x \le a^-: \qquad \qquad a^+ \le x \le L:$$

$$\upsilon_{I} = \frac{-Pbx}{6LEI} (L^{2} - b^{2} - x^{2}) \qquad \upsilon_{2} = \frac{-Pbx}{6LEI} (L^{2} - b^{2} - x^{2}) - \frac{P(x - a)^{3}}{6EI}$$

$$\theta_{I} = \upsilon_{I}' = \frac{-Pb}{6LEI} (L^{2} - b^{2} - 3x^{2}) \qquad \theta_{2} = \frac{-Pb}{6LEI} (L^{2} - b^{2} - 3x^{2}) - \frac{P(x - a)^{2}}{2EI}$$

For $a > b$, δ_{max} obviously $\varepsilon (0, a^{-})$.

$$\delta_{max} at \upsilon_{I}' = 0 \Rightarrow x = \sqrt{\frac{L^{2} - b^{2}}{3}} \quad \delta_{max} = \upsilon_{I} (\sqrt{\frac{L^{2} - b^{2}}{3}}) = \frac{Pb(L^{2} - b^{2})^{\frac{3}{2}}}{9\sqrt{3}LEI} (a \ge b)$$

note: The special case method for finding $\delta_{midpoint}$ in the flexure derivation can still be used.

note: Starting with the bending moment equation always works.

Superposition

 $\upsilon_{total} = \sum \upsilon$ and $\theta_{total} = \sum \theta$. Values can be found at specific points, or general (in terms of x) formulas can be found.

Superposition can provide a useful shortcut for unusual loads too. But for these loads, it is usually NOT possible to obtain a general formula v(x) and $\theta(x)$ for the whole beam because point load formulas (which are different for the left side of the load versus the right side) must be summed, and the shortcut involves an infinite number of point loads. (see next example).

e.g. Find: δ_c

Method 1: find M(x) and solve $EI\upsilon''$ Method 2: find -q(x) and solve $EI\upsilon'''' \varepsilon [A, C]$

Method 3: point load midpoint deflection formula (tabulated in the appendix of many

textbooks): $\frac{Pa}{48EI}(3L^2 - 4a^2)$ $b \ge a$ (note: this equation works for all points under the load, i.e. between A and C)

For an arbitrary point under the triangular load, the force $P = qdx = \frac{2q_0x}{L}dx$ and the distance "a" is "x". The deflection at C is the sum of the deflections caused by each infinitesimal force.

note: If the triangular load starts at a distance "k" away from A, then the lower limit of integration would be k.

note: There is no <u>easy</u> way to obtain a <u>general</u> formula for the beam, which includes $\upsilon(x) \varepsilon$ [A, C], because under the triangular load, the location of υ is to the left of some of the "point loads" and to the right of others (two separate formulas).

Moment-Area Method

Just like load equations, this method is particularly useful for cantilevered beams.

Note: For simply supported beams, since the concavity is reversed compared to cantilevered beams, θ is oriented differently, and t is on the opposite side of the deflection curve from δ . (see second e.x.)

Method 1: find M(x) and solve $EI\upsilon''$ Method 2: find -q(x) and try to solve $EI\upsilon'''' \varepsilon [C, B]$ Method 3: point load end point deflection formula and <u>superposition</u> Method 4: point load deflection formula for cantilevered beam for $a \le x \le L$ and superposition

Method 5: use area under
$$\frac{M}{EI}$$
 diagram

e.g. 2 A D B $ds' = rd\theta$ $ds' \approx dt$ and $r \approx x_1$ Just as in the derivation for the cantilevered beam. $t_{B_{A}} = A_{I} \bar{x}_{I} = \frac{Pab}{2EI} (\frac{L+b}{3}) = \frac{Pab}{6EI} (L+b)$

From similar triangles,

$$\frac{t_{B/A}}{L} = \frac{Pab}{6LEI}(L+b) = \frac{z}{b} \quad (\theta_A = \frac{t_{B/A}}{L})$$
$$\Rightarrow z = \frac{Pab^2}{6LEI}(L+b)$$
$$t_{D/A} = A_2 \overline{x}_2 = (\frac{Pa^2b}{2LEI})(\frac{a}{3}) = \frac{Pa^3b}{6LEI}$$

note: In either of these last two examples, a general formula for δ would have been possible using the moment-area method.

Simple statically indeterminate system (bending)

For a vertically-loaded beam, there are two relevant equations of equilibrium. If there are more than two unknowns (redundant supports), then the extra equations needed may come from $\upsilon, \upsilon', \upsilon'', \upsilon'''$ in terms of the unknown reactions. $\upsilon, \upsilon', \upsilon'', \upsilon'''$ combined with the initial conditions, are the equations of compatibility.

e.g. 1 Find: M_A , A_y , B_y for the propped cantilevered beam.

$$EIv_{1}'' = -M_{A} + A_{y}x$$

$$EIv_{2}'' = -M_{A} + A_{y}a + \int_{a}^{b} A_{y} - Pdx$$

$$= -M_{A} + A_{y}a + A_{y}x - Px - A_{y}a + Pa$$

$$EIv_{1}' = -M_{A}x + \frac{A_{y}x^{2}}{2} + c_{1}$$

$$EIv_{2}' = -M_{A}x + \frac{A_{y}x^{2}}{2} - \frac{Px^{2}}{2} + Pax + d_{1}$$

$$EIv_{1} = \frac{-M_{A}x^{2}}{2} + \frac{A_{y}x^{3}}{6} + c_{1}x + c_{2}$$

$$EIv_{2} = \frac{-M_{A}x^{2}}{2} + \frac{A_{y}x^{3}}{6} - \frac{Px^{3}}{6} + \frac{Pax^{2}}{2} + \frac{A_{y}x^{3}}{6} - \frac{Px^{3}}{6} + \frac{Px^{3}}{2} + \frac{Px^{3}}{6} + \frac{Px^$$

V(x)

Continuity condition:

$$\upsilon_1'(a) = \upsilon_2'(a) \Rightarrow d_1 = \frac{-Pa^2}{2}$$
 (substituted (2))

Boundary condition: $v_2(L) = 0 \Rightarrow d_2 = \frac{1}{6} [3a^2LP + 2L^3(A_y - P)]$

Extra continuity condition : (equation of compatibility)

$$\upsilon_{I}(a) = \upsilon_{2}(a) \Longrightarrow$$

$$0 = -\frac{Pa^{3}}{6} + \frac{Pa^{3}}{2} - \frac{Pa^{3}}{2} + \frac{1}{6} [3a^{2}LP + 2L^{3}(A_{y} - P)] \qquad (3)$$

unknowns: A_y , M_A , $B_y = 3$ # equations: 2 equil + 1 extra / compatibility = 3

$$A_{y} = \frac{Pb(3L^{2} - b^{2})}{2L^{3}} \quad B_{y} = \frac{Pa^{2}(3L - a)}{2L^{3}} \quad M_{A} = \frac{Pab(L + b)}{2L^{2}}$$

- we can now find $\sigma, \tau, \text{ or } \upsilon$ like any statically determinate beam

note: we could also find υ for fixed A, load P, and <u>no</u> roller B, then find υ for fixed A, force B_y , and <u>no</u> load P, and $\sum \upsilon(B) = 0$, as our compatibility equation.

e.g. 2 Find: A_y , B_y , M_A , M_B for the fixed-end beam.

- Same exact differential equations as the previous e.x.-

But, now we have four unknowns.

The extra equation comes from $\upsilon_2'(L) = 0 \Rightarrow$ 4 equations

$$+ \uparrow \sum F_{y} : A_{y} + B_{y} - P = 0 \Longrightarrow B_{y} = P - A_{y} \quad (1)$$

$$+ \sum M_{B} : -A_{y}(L) + M_{A} + Pb - M_{B} = 0$$

$$\Rightarrow M_{B} = M_{A} - A_{y}L + Pb \quad (2)$$

note: $\upsilon_2'''(L) \neq 0$, $\upsilon_2''(L) \neq 0$ because the equation is valid for $a \le x \le L^-$ only.

Extra conditions : (equations of compatibility)

 $-\mathbf{M}_{\mathrm{P}}$

-M_A

a

$$\upsilon_{I}(a) = \upsilon_{2}(a) \Longrightarrow$$

$$\frac{1}{6}a^{2}(A_{y}a - 3M_{A}) = \frac{1}{6}(a - L)^{2}[2L(A_{y} - P) - 3M_{A} + a(2P + A_{y})] \qquad (3)$$

$$\upsilon_{I}'(a) = \upsilon_{2}'(a) \Longrightarrow$$

$$\frac{1}{2} [L^{2}(A_{y} - P) - a^{2}P - 2L(M_{A} - aP)] = 0$$
(4)

unknowns: A_y , M_A , B_y , $M_B = 4$ # equations: 2 equil + 2 extra / compatibility = 4

$$M_{A} = \frac{Pab^{2}}{L^{2}} \quad A_{y} = \frac{Pb^{2}}{L^{3}}(L+2a) \quad B_{y} = \frac{Pa^{2}}{L^{3}}(L+2b) \quad M_{B} = \frac{Pa^{2}b}{L^{2}}$$

Superposition

e.g.
Find:
$$A_y$$
, B_y , M_A

Bearing and shear stress for connections

where A $_{\rm b}$ could be the thickness of a bolt plate multiplied by the diameter of the bolt, and F_b is the force acting on that bolt.

Shear stress = $V/A = \tau$ where V is the shear force and A could be the cross-sect area of a bolt at the location of the bolt plate.

e.g. Given: Force of 32kN on the angle bracket shown. Find: σ_b and τ for each bolt. (see below)

$$(\sigma_{b})_{top \ bolt} = (\frac{(A_{b})_{top}}{total \ A_{b}}) \frac{F}{(A_{b})_{top}}$$

$$= \frac{32x10^{3}}{2(.015)(.015) + 3(.015)(.01)} = 35.55MPa$$

$$(\sigma_{b})_{bottom \ bolt} = (\frac{(A_{b})_{bottom}}{total \ A_{b}}) \frac{F}{(A_{b})_{bottom}} = 35.55MPA$$

$$(\tau)_{top \ bolt} = (\frac{A_{top}}{total \ A}) \frac{F}{A_{top}}$$

$$= \frac{32x10^{3}}{\pi/4} [2(.015)^{2} + 3(.01)^{2}] = 54.32MPa$$

$$(\tau)_{bottom \ bolt} = (\frac{A_{bottom}}{total \ A}) \frac{F}{A_{bottom}} = 54.32MPa$$

Double Shear

Multiple Shear

Strong and weak neutral axes, shear stresses, and bending stresses, for asymmetric sections, can be found in graduate level courses on Advanced Mechanics of Materials, Advanced Structural Analysis, or Advanced Steel Design. Buckling is another important phenomenon that is left to more advanced courses.

Works Cited

- Gere, James M. <u>Mechanics of Materials: Sixth Edition</u>. Brooks/Cole. Belmont, CA 2004.
- Lee, Vincent. Lecturer. University of Southern California. CE225. Spring 2005.

Appendix

,

Appendix A

SECTION PROPERTIES FOR SAWN LUMBER AND TIMBER

	a		X-X Axis		Y-Y Axis		+				
	Dressed	Area	Moment	Section	Moment	Section	Board	Weight in pounds per linear foot of piece whe			
Nominal	Size	ot	or	Medulus	Inertia	Modulus	Der	we	ignt of woo	a per cubic root equals	
Size	(S4S)	Section	Inertia	Modulus	Incrua	S	Lineal	25	30	35	
$b \times h$ in.	$b \times h$ in.	in."	in.4	in. ³	in.4	in.ª	Foot	pcf	pcf	pcf	
		1.075	0.077	0 791	0.089	0.984	+	0.326	0.391	0.456	
1×3	1×21	1.875	0.977	0.761	0.000	0.899	1	0.456	0.547	0.638	
1×4	1×31	2.625	2.680	1.551	0.123	0.526	1	0.716	0.859	1.005	
1×6	1×51	4.125	10.398	3.781	0.195	0.510	1	0.044	1 133	1.322	
1×8	1×71	5.438	23.817	6.570	0.255	0.000	3	1 904	1 445	1.686	
1×10	1×91	6.938	49.466	10.695	0.325	0.807		1.465	1 758	2 051	
1 × 12	₹×11	8.438	88.989	15.820	0.396	1.055		1.405	1.750		
2×3*	11 × 21	3.750	1.953	1.563	0.703	0.938	1	0.651	0.781	0.911	
2×4"	11×31	5.250	5.359	3.063	0.984	1.313	1	0.911	1.710	9.005	
2×6ª	11×51	8.250	20.797	7.563	1.547	2.063	1	1.452	0.066	2.005	
2×8*	11×71	10.875	47.635	13.141	2.039	2.719	13	1.888	9 901	8 879	
2 × 10*	11×91	13.875	98.932	21.391	2.602	3.469	15	2.409	2.091	4 109	
2 × 12*	11×11	16.875	177.979	31.641	3.164	4.219	2	2.930	5.510	4.102	
2×14*	11×131	19.875	290.775	43.891	3.727	4.969	23	3.451	4.141	4.831	
874	24 × 84	8,750	8.932	5.104	4.557	3.646	1	1.519	1.823	2.127	
3×6	21 × 51	13,750	34.661	12.604	7.161	5.729	11	2.387	2.865	3.342	
9×8	21 × 71	18,125	79.391	21.901	9.440	7.552	2	3.147	3.776	4.405	
8×10	24 × 91	23,125	164.886	35.651	12.044	9.635	21	4.015	4.818	5.621	
8 × 19	94 × 114	28,125	296.631	52.734	14.648	11.719	8	4.883	5.859	6.836	
3×14	24 × 131	33,125	484.625	73.151	17.253	13.802	31	5.751	6.901	8.051	
3×16	21×154	38.125	738.870	96.901	19.857	15.885	4	6.619	7.943	9.266	
4×4	31 × 31	12,250	12.505	7.146	12.505	7.146	11	2.127	2.552	2.977	
AXIE	34 × 51	19.250	48.526	17.646	19.651	11.229	2	3.342	4.010	4.679	
4 × 8	84 × 71	25.375	111.148	30.661	25.904	14.802	23	4.405	5.286	6.168	
4 × 10	31 × 91	32.375	230.840	49.911	33.049	18.885	31	5.621	6.745	7.869	
4 - 19	84×114	39.375	415.283	73.828	40.195	22.969	4	6.836	8.203	9.570	
4 14	34 × 184	46.375	678.475	102.411	47.340	27.052	4	8.047	9.657	11.266	
4×16	3t × 15t	53.375	1,034.418	135.661	54.487	31.135	51	9.267	11.121	12.975	
00	FLUEL	90.050	76 955	97 790	76 955	27.729	3	5.252	6.302	7.352	
6×6	51 × 51	30.250	109 950	51 568	103 984	87,813	4	7.161	8.594	10.026	
6×8	51 × 71	41.250	195.559	99 790	181 714	47 896	5	9.071	10.885	12.700	
6×10	51 × 91	52.250	592.905	191 990	150 449	57 979	6	10,981	13.177	15.373	
6×12	54×114	03.200	1 197 679	167.068	187 179	68.063	7	12.891	15.469	18.047	
6×14	51×131	74.250	1,127.072	990 990	914 901	78,146	8	F4.800	17.760	20.720	
6×16	51 × 151	06 950	9 456 390	980 799	949 680	88,229	9	16.710	20.052	23.394	
6×18	51 × 1/1	90.200	2,450.500	949 569	970 850	98 313	10	18.620	22.344	26.068	
6×20	5t × 19t	107.250	3,390.404	499 790	908 088	108 396	11	20.530	24.635	28.741	
6 × 22	$5\frac{1}{2} \times 21\frac{1}{2}$ $5\frac{1}{2} \times 23\frac{1}{2}$	129.250	4,555.080	506.229	325.818	118.479	12	22.439	26.927	31.415	
					000.055	70 819	F1	0.766	11 710	13 679	
8×8	7 × 7	56.250	263.672	70.313	263.672	/0.313	51	10 970	14 944	17 818	
8×10	7±×9±	71.250	535.859	112.813	333.984	89.063	05	12.570	17.060	90.064	
8×12	7±×11±	86.250	950.547	165.313	404.297	107.813	8	14.9/4	17.909	20.504	
8×14	71×131	101.250	1,537.734	227.813	474.609	126.563	95	17.5/8	21.094	21.005	
8×16	71×151	116.250	2,327.422	300.313	544.922	143.313	105	20.182	24.219	20,200	
8×18	71×171	131.250	3,349.609	382.813	615.234	164.063	12	22.780	27.344	85 547	
8×20	7±×19±	146.250	4,634.297	475.313	684.547	182.813	135	25.391	30.409	30.109	
8×22	71 × 211	161.250	6,211.484	577.813	755.859	201.563	145	27.995	35.594	49 990	
8×24	$7\frac{1}{2} \times 23\frac{1}{2}$	176.250	8,111.172	690.313	826.172	220.313	16	30.599	30.719	42.009	
10 × 10	01 × 01	90.250	678,755	142.896	678,755	142.896	81	15.668	18.802	21.936	
10 - 10	04 - 111	100 950	1 204 026	209 396	821.651	172.979	10	18.967	22.760	26.554	
10 - 12	01 - 191	198 950	1.947 707	288 568	964.547	203.063	11	22.266	26.719	31.172	
	31 131	120.200	1,011.101	1 000.000	1 100 110	099 146	191	95 564	80 677	85 790	
10 - 16	01 151	147 950	2 948 068	1 380.396	11.107.443	233.140	1.54	40.004	00.011	001100	