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MECHANICS OF ELASTIC MATERIALS



“Mechanics of Materials™ is typically an engineering student’s first exposure to the
important concepts relating to material properties, such as material strength and material
stiffness. Material strength and stiffness are important for the analysis of structures, since
the equations of static equilibrium are not enough to determine the distribution of forces
within a complex structure. In addition, knowledge of material strength and stiffness is
vital for the design of structures, where the size (and corresponding cost) of a component
of a structure, such as a beam, depends on both its resistance to excessive deformation
(primarily a function of stiffness), and its ability to resist damage (primarily a function of
strength).

As we will see, beginning with this outline, two of the most important quantities in
structural engineering are “stress” and “strain.” The stress and strain of a material are
often linearly-related — a discovery that dates back to 1678, when Hooke famously stated
“ut tensio, sic vis," meaning, “as the extension, so the force." The larger this ratio, the
more stiff the material, and the greater its resistance to deformation. Keeping
deformations small is sometimes a constraint in the design of structures.

A constraint that is even more often present in engineering design is to ensure that the
material strength, which has units of stress, is not exceeded. Stress demands, unlike
strains, are not so easy to “see” or directly measure, but stress is a quantity that engineers
like to use for the purpose of comparing to material strength. Designing a structure so
that the stress demands in all of its structural components remain less than their
corresponding material strength values is one way that an engineer can ensure that the
structure is safe to perform its intended function.



Hooke’s Law

area A
M /
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[ direction
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force P
Normal stress = =—=0

cross —sectional area A

e ) b . ki . N
(stress distribution in units of —-,psi or %, ksi or —-, Pascal)
in in m

Normal strain =

clongation = S =¢ (fraction of change in length) (no units)
length L

note: As the rod elongates, the area shrinks = the actual stress is slightly larger than
that assumed above. Similarly, the actual strain is actually LLS , which is
+

slightly smaller than that assumed above.

Most general form of Hooke’s Law:
o = Ee where E = modulus of elasticity (material property)

note: Unless stated otherwise, P is assumed to be an equivalent force through the
centroid of A.

note: As a practical rule, o = P/A may be used with good accuracy at any point within a

bar that is at least as far away from the force concentration as the lateral
dimension of that bar (d or greater in the picture below).

ce—t——0+

note: for non-uniform bars, such as the eyebar above, as long as you make sure that
failure will occur in the prismatic portion of the beam, it can be analyzed using
the normal stress and strain equations above.




yield stress

gtrain £

The above picture is a graph of stress versus strain for typical structural steel. We can see
that the slope of the curve is E, as one would expect according to the Hooke’s Law
equation stated above. Many materials obey this linear relationship. In addition, this
portion is called the “elastic” portion, because any structure that is stressed within the
elastic portion will return to its original state upon release of stress. The “yield stress” as
shown on the graph is typically considered the limit of the material. Once the material
reaches this stress, it continues to stretch or compress without any further load, and upon
release of all load, will only partially return to its original state. This phenomenon is
called “yielding.” The yield stress value, which is a material property, is typically
considered the strength of the material. Grade 50 steel, for example, has a yield stress of
50 ksi.

Often, materials are idealized as perfectly “elasto-plastic.” As we can see on the diagram
above, the steel is perfectly elastic, then perfectly plastic (yielding portion = “plastic”
portion). The dotted box in the diagram, which shows the more a smooth transition, is
sometimes neglected.

In this chapter, all materials will be assumed linear-elastic.

5=TL AE —vaxial rigidity"

AE
S= P f = flexibility = L (Iength che_mge produced
AE unit force

P=ko& k =stiffness = AE force required

L unit of length change

)

) (commonly written version of Hooke's Law)



e.g.

Given: Dimensions of frame shown below. Lgp = 480mm, Lcg = 600mm, Agp =
1020mm?, Acg = 520mm?, Eqeel = 205GPa
Find: Assuming member ABC to be rigid, find Ppay if the displacement at point A is

limited to 1.0mm.

Al

< =]
,_f w=| a
3 b

|P
|/ 450mm 225mm )
| 600mm
| D
| 120mm E ||
| —
(=R 7]
P
Er Fe
450mm 225mm
C"
Sopl B |8
L 450 B YE 225 o CE

(exxaggerated)

A

KT)ZMB : P(450) — Fe (225) =0 =
FCE:2P

T Fy:Fgpp —2P-P=0=Fgp =3P

—— > Fx=0=Fgpx=0

(3P)(480x107)
(205x10°)(1020x10~°)

BD = 6.887PX10_9 m

(shortening)

B (2P)(600x10 )
CE —
(205x10° )(520x10~°)

=1.126Px10~°* m

(lengthening)

B moves to B’, C moves to C’, and A moves to A’
by an amount da.

From similar triangles,

Op+0ce _ Ogp + Oce
450+ 225 225

(8n) atoneq +(1.126P, X105 mm) _ (6.887P,, x10"*mm) + (1.126P,,, x10~° mm)

450mm+ 225mm

substitute (5,)

allowed

225mm

=1.0mm, solve for P = P =23,200N
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Deformation of tapered bars in tension
Continuously varying loads or dimensions;
~ N(x)dx J- N(X)
EA(x) EA(X)
eg. 1l
Given: Square beam loaded by its own weight. Density = 10 kip/ft, E = 2000ksi (see pic
below).

Find: &



eg 1

| 0

10 in

Area=10(10) =
100 it

100 lap

Tp

10-y

e.g.2

kip

support reaction: F, =(10 )(10ft)_100k|p

Top piece:

o ZFy:lOO—(lOklp

—)y)-P=0=P=100-10y
Bottom piece:
+TY Fy:P-(10

J- 100-10y q _ 500kip * ft
) (100in?)(2000ksi) ~  200,000kip

|"'O)(lo y)=0= P =100—10y OK

=.0025ft

note: the general formula for length change of a bar (of constant A)

subjected to uniform _ force is 0= % (P = 100kip in above

unit length
problem)

Given: Rectangular tapered beam of depth 10 in. loaded by its own weight. Same
density and modulus of elasticity material as the above problem.

Find: ¢

Density p=10—

eg 2

Area = 12(10) = 120 in®

100 kip

GUP

;
wh

kip 1ft _1kip
ft " (12in)(100in*)"  120in’

Support reaction:

120+ 80 12in_, 1kip
F,= in”)(10 ft)(——
a=( X G Doin

This used the fact that Ilnearly changing area=
volume = (average area)(length)

) =100kip

A(y)=d(y)*depth= (% y +12)(10) =120-dy

Top piece:
120+ (120 - 4y). 12in_, 1kip
+T> Fy:100-P - in®)(yft =
y (f) 2Fy ( 2 R (lft )(1zoin3
=P =1(y2 — 60y +500)
/ (y* =60y + 500) 002f
. t
j (120 — 4y)(2000) a =

note: The tapered bar has slightly less elongation than a prismatic

bar of equal length and volume.




note: The area must be constant or vary linearly or the problem is more complex. i.e.
might be told that the top length of the tapered bar is 12 in and the bottom length
is 8 in, and it is a circular cylinder. So, A =361 and 16 respectively.

i , m,12-8

A = — d = —
W =210 =G
volumes is more complicated.

y+12)* which is NOT linear. So, finding needed

Simple statically indeterminate system (axial)

The following problems will be our first look at statically indeterminate (redundant)
systems, as described in the section titled “A note on redundant systems” in the outline on
Statics. By knowing the properties of the materials and Hooke’s Law, which essentially
relates force and displacement, we now have an additional equation to use for the purpose
of finding unknown forces. This is called an equation of compatibility. All we have to
do is find a way to relate displacements in members where we have unknown force(s).

eg. 1l
Given: Rigid bar of negligible weight rests on top of aluminum and steel beams. Force P
acts at the midpoint.
Aluminum beam: diameter da = 1m, (o, )

Steel beams: diameter ds = .5m, (o)

allowed — 80MPa, EA =70GPa
=220MPa, E; =210GPa

allowed

Find: Prax
eg 1 From symmetry (or > M, =0),
P
Fo=Fs, =Fs
| | T Fy:F +2F-P=0
g A " Equation of compatibility:
Since the top bar is rigid,
05 =0,
b ) FL _ F.L 1)
‘ \I/O ES AS EAAA
e
T T T From Y Fy=0,F, =P, —2F @
| ||l I
[ O F F,
I | I : | | (O-S)allowed :A_ (3) and check (O-A)allowed ZA_
| | S A
[ ! ! | ! OR
F F
/‘\FSI /FFA F32 (O-A)allowed = A_A (3) and CheCk (O-S)allowed 2 A_S
A S



3 equations, 3 unknowns F,, F, P, — Pmax =144 MN (at which point steel yields)

S ' max

e.g.2
Given: Force P acts at the end of a rigid, pinned bar.
wire 1: d, =4mm, (7)) 4iowea = 200MPa, E, = 72GPa

wire 2: d, =3mm, (,) yowed = 175MPa, E, = 45GPa

Find: Pmax
eg 2 c . b)
* I M, T h+T,(2b)-P(3b) =0
L,=4m L,=3m +TZFy:T1 1T, ~Ay-P=0
f: e 2 L|[F ,‘B Equation of compatibility:
P
b b A Férom s§|mllar triangles,
2—;) = gl =5, =26,
A I}) F B
: 02 LL 2L
B’ EZAZ El Al

From > M, =0, T, =3P —2T, (2)

max

From > Fy=0, Ay=T,+T,-P (3)

(O_l)allowed :;_1 (4) and check: (0'2) >

allowed =
1

>

OR

(2ot =7 (@) and check: (0,) g >

allowed =—
2

>

ax max

4 equations, 4 unknowns T,,T,, Ay, P — P =1.26kN (at which point wire 2 yields)

Poisson’s Ratio

change in lateral length

Lateral strain = = ¢' (no units)

initial lateral length

g'=ve where v =Poisson’s ratio (material property) and recall the definition of ¢
from the beginning of this chapter
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(change in lateral length)=-(initial lateral length)(v )(¢)

note: only applies to isotropic materials (same elastic properties in axial, lateral, or any
direction). Concrete and most metals are isotropic. Wood is an example of an
anisotropic (non-isotropic) material (it is much tougher against the grain).

e.g.
Given: Hollow polymer pipe of length 4 ft, outside diameter d, = 6 in., inside diameter

d; =4.51in., is compressed by 140 kip normal force. E = 3000 ksi, v=.3
Find: Increase in wall thickness At.

e.g.
140

top view P .
Ad Ad, =d,v(——) =4.5(3)( ) =.00509in
“ L AE 7/, (6" ~4.5)(3000)
P 140 .
Ad, =d,v(—) = 6(3)( ) =.00679in
AE %(62 —4.5%)(3000)
At = Ar, —Ar, = w =.00085in

note: under compression, outer diameter, inner diameter,
and thickness all increase.

note: follow the same process for the lateral elongation (or
shortening) for each dimension of a rectangular bar.
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Torsion

Above is a fixed, prismatic beam subjected to a torque at the right end.
¢, = angle of twist

¢, depends on distance x from the wall

v, depends on distance p from the center

Assume distance bb’ is very small and so the arc length bb’ is approximately equal to a
straight line bb’.

¢, =[fraction of arc length change](2r radians) = [Zb—b](2n) = bb
Tr r
bb' bb'
Yimax = [ ](275) =
27(ab) ab
We can see that v, = rd)% is really the same expression as above.
p Do
Also, y == = :
Yp r ’Ymax p L
T=Gy
¢ p ¢
Ty = =Gr2& 1 =X1 =QGpmx
max GYmax L P r max p L

We need to find a relationship between T and T:

T=[t,p dA:;[(T‘%p)p dA

A
If polar moment of inertia = I, = J-psz , then:
A



T Tr . . .
T="*[ =1, = T — general formula for a circular shaft subjected to torsion

r p

TmaxL — TL r¢max —_ Tmax —_ Tr

(I)max = Gr - GIp Ymax = L - G - GI

dmax 1s often just written ¢

p

note: ¢x= 3(1)max = DX (also note similarity of ¢ma.x above to 6 = P—)
L EA
Solid Bar:
2n ot 4 3
T max T max T[r T max TCd
T=—2 [ [p’pdpdf=(—)=——= =
1 SR r 2 16

16T
Tmax = 5 (s0lid shaft)
nd

note: recall from calculus that the extra p in the integrand is just an extra polar
integration factor

Hollow Tube:
2t 12
T T T 4 4 T T 4 4
T: max 2 d dez max .t =t — max —d —d =
o euﬂpp pdO=(=2)7(n" -1 ) = (22 (d," -d,)
16Td
max =4—24 (tube)
nd, —-d,’)
eg. 1l

Given: Socket wrench transmits torque to a stuck bolt.
Taowane = 460MPa G =78GPa  for the 8mm diameter, solid shaft shown

Find: T, and ¢, for this allowable torque value

eg 1

Snun

L
-

W

200mm

12
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-3 133
Tmax — 16-2 Tmax — (Tallowable )7[(8)(10 ) 24625N*m ( Fmax — Tm;ix)
d 16 d
-3 o
= T _ (Zatouati )(2§Ox10 ) _ 29Rad or (.29 Rad )( 1i0d ) =16.6°
Gr  (78x10° )(5x107) 7 Ra

e.g.2
Given: Either a solid or a hollow steel shaft is to be manufactured,

Toax =1200N*m 7 ... =40MPa  Thickness of hollow shaft =.1d,
Find: (d; )uins(d, )win» @nd the ratio of material usage for the hollow shaft versus the

solid shaft.
Solid:

eg 2
= 161 (do )min =3 16Tmax =53.5mm

Thmax = 3 = -
Tube:

; 16Td,
Tmax

1(12 :ﬂ.[d 4_(8d )4]:>
] 2 . 1(23T
% {12 (d5 Jnin :3\/ > 7y = 63.7mm
(Tallowable )”(1_8 )

Since both shafts are the same density and length, the ratio of weights = the ratio of
volumes = the ratio of areas:

Ahollow _%(dzz_dlz)_ 47
Asl'd - 77d ? -
oll 4 0

The hollow shaft has a larger diameter, but only uses 47% as much material as the solid
shaft. Hollow shafts are more efficient.

'Ell (}1 (]2 IE}2 4, = L 4, = L ¢, = Tsl, ¢, = T.L,
1 2 = 3 4
/ - Gyl Gyl G, ,, G,l,,
C
a7
i ¢total = z¢
sEFE ke g
\/ _EJFB . —L'IT T,,T,,T;,T, are the internal torques within sections
- . D L,,L,,Ls,L,, respectively, which can be found from
L, L, Lj i L4 drawing free body diagrams as was done for the axial

case in the previous section on Hooke’s Law.



€.g.
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Deformation of tapered bars in torsion

Continuously varying torques/dimensions;

CTEd®) | F T
do= G, (x) ¢ !Glp(x)dx

note: satisfactory as long as angle of taper is less than 10°

[, (x) determined from d(x), where d is the diameter

note: A shaft in torsion has a normal stress. If ¢ for a material is equal to, or less

allowable

than t_, ..., then the design for the shaft in torsion is controlled by 6. And, it will

fail along a 45° axis. (proof — section on Mohr’s Circle later in this chapter) (e.g.
chalk)

note: Similarly, a member under axial load has a shear stress. If t

for a material is

allowable

equal to, or less than %(Gauowable) , then the design for the axially loaded member is

controlled by 1. And, it will fail along a 45° axis. (proof- section on Mohr’s Circle)
(e.g. concrete)

Simple statically indeterminate system (torsion)

e.g.
Given: Circular bar with fixed (rigid) ends shown.
Find: Support reactions and ¢

max *

ST T ﬁZTA +T, —T, — 2T, =0 (eq of equilibrium)
A i =B L #C D
0 300 00 From the three FBD’s to the left, we can see that:
- - T,=T, T,=T,-T, T,=3T,-T,
S e
’ : D (TA)3%O (To _TA)S%O
¢ = Gl ¢, = Gl
T p ’
(8T, -T)4,
=
T cew Gl
e :
LR E
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_H,Z-(TA L RUSE K L BL-T, 457, o

Gl Gl Gl

p p p
(eq of compatibility)

T.
2eq,2unkn0wns:>TA=3T% T, = 3T, _3__3T%

2
3T 3T,
( %)3'-10 oT L /)3'- lo_-3T.L 3T L
¢1 = = ¢2 = ¢2 = A~
Gl, 2061, Gl,

206, 206l
3T
_ (8T, - /)4L 10 3T,L

Quick summation of arc-

¢m ax

5GI

lengths ry prove that

B o +CL

= (4%0)%

note: Direction of ¢ for each segment should be consistent with the direction of torques

on free-body diagrams for each segment. Incorrect guess will simply result in
negative values for ¢ .

) and the force (T) are known,

and we want to minimize the area A. Axial, bearing, and direct shear stresses are
related to A, so we can easily minimize A. Shear stress for a solid shaft in torsion is
not related to A, but it is related to d, so we can easily minimize A. The stress for a
hollow tube in torsion, however, is not related to A and it depends on more than one
dimension (d, and d, ). There are thus three unknowns (d,, d,, and A ) and two

note: As always with design, the allowable stress (T

allow

, 16Td .
equations (A = E( —d,*), Tyew = ——————). One might be tempted to use
4 TC(d2 o dl )
dA . : : .
. =0 for a third equation, but there is no local minimum. It turns out, not
X

surprisingly, that A — 0asd, — woand d, — d,. The best method, for this
particular case, would be to use a table of common tube sizes and pick the tube with
the smallest area in which 1 <t In engineering practice, methods that utilize

allow *

tables are often used, particularly for the selection of timber and steel section sizes
for flexure, which we will learn about next.



Bending
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The following derivation will assume “pure
bending” (bending moment is constant/shear force
V = 0) and prismatic material. Longitudinal lines
in the lower part of the beam are elongated (T)
while those in the upper part are shortened ( C).
Somewhere between the top and bottom of the
beam is a longitudinal surface in which there is no

length change. This surface is the neutral surface. It passes through the centroid of the
cross-sectional area, assuming that the cross sectional area is symmetrical about the xy
plane and load resultants act in this plane.

neutral switace

longitudinal
length change

dA

%]

«:T cross-gect view

note: for negative bending moment,
the arrows are reversed
{compression on bottom,
tension on top)

p = radius of curvature

1
curvature = K = —
p

If the flexure is small, p is large and « is small.

£(2n) = d0 where ds is the fraction of arc

2np 2np
length change, and 27 radians = 360°.

So, pd0=ds «x= a9 we deal with very small

ds
do . .
flexure, so Kk = . (0 in radians )
X

Now we’re ready to find stress, strain, curvature,
and deflection, in terms of bending moment.

Deflection (at midpoint) = § =p —p cos(?)
do=5 L
p P

An arbitrary line ef above the x axis will shorten.
Its original length = dx and its final length =

(-0~ (- =dx —Yax
p p

longit length change

d=p-p COS(L)
2p

longitudinal strain = —
original length

(dx—ydx)—dx

_ [ __Y _ ) _

= = < 8—_—_Ky
dx p p

-E
G=E8=—y=—EKy

p
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Need to find a relationship between ¢ or k and M :

M= J-(f;)rce )(dist)(area) = J.G ydA = IKE y- dA If area moment of inertia=1=
A
:[ysz, then K = % o= %_M (ﬁ) € :%y note: I# I
c= —E(ﬁ)y = —? maximum tensile and compressive bending stresses occur at points
located farthest from the neutral axis.
(O = (O =

For positive M, o, is compressive, G, is tensile. For negative M, o, is tensile, o, is
compressive. So, there are up to four strength conditions to check to determine o, for

a given prismatic beam.
- see next example for center of mass and I calculation of an odd shape.

bh’
Rectangular cross-sect: =
4

Circular cross-sect: = md

flange

¥
/ The “wide-flange” shape to the left approaches the ideal cross-
sect shape for a beam of given area and height. The narrowness
web of the web is limited only by the shear stress.
flange

note: small deflections only
note: these equations apply for cantilevered beams too
note: bending stress is NOT significantly altered by the presence of shear stresses, so

o=— NIIy can be used for non-uniform bending with M

yieldingo,

max
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Given: Beam with uniform cross-section shown and uniform load.

eg. 1l
eg 1
- 3.2 KN/m
LILELL Hll
A =3
3m 1.5m
3m |
[ E

.013111,[\ .08m
012m

(crogg-gection)

Find: (o,),, and(c,)

max max *

Neutral axis from equivalent moments:

If y=c,,then(.3)(.012)(.074—y)=
2(.068)(.012)(9— .034) where (.3)(.012) is A, and
2(.068)(.012) is 2A,.

&

z

=y =.06152m
= ¢, =.06152m and ¢, =.08 —.06152m = .0185m
— M, d.
General formula: y = LM, = 2 A9,
YA XA

can be ANY parallel

3 axis. d, =dist from A, (A neutral axis)to z'.

012 G . zp y=dist from z’ to z.
068 ﬁ v _03413 074 22 L, =Y[(1,), +Aidi2] where d, =dist from z, toz
012 (see pic to the left)

1 3
(1 )= 5(3)(-012)
(1,), = %(.3)(.012 )® +(.3)(.012)(.074 - .06152 )% = 6.04x10~

(1,), =(1,), = %(.012 )(.068)* +(.068 )(.012)(.06152 — .034)? = 9.32x10~

I, =>1=(6.04x10")+2(9.32x10" ) = 2.47x10° m*
note: the above formulas assume symmetry abouty. 1, formula also assumes symmetry
aboutz. —i.e. A, issymmetrical about z, and A, and A, are symmetrical about

Z,.
Mix 3
) Between AB: (o, )y, = 2022X10 )(0I85) _ 15 oppa ()
e 2 47x10
S 2.025x10° )(.06152)
(0 oo =& 00152) _ 50.4mPa (1)
2 47x10
3
X Between BC: (0, )y, = 00 N0185) _ o7 ompa ()
2 47x10
3
(0,),, = (38XI0°)(06152) g0y o
T =36 kKN*m 2.47x10
— (0.),.= 89.7Mpa (o, )., = 50.4 MPa

(slapped worls)
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e.g.2
Given: Beam cross section.
Find: c,,c,, |

choose z’ at bottom (y =¢,):

300mm

@ omn - R
i

. (200)(100)(50) + [(200)(200) -7/, (120)? ](200)
e ———Z
< (300)(200)—%(120)2
L = 138.39mm
200mm where (200)(100) is the area of the lower third and
(200)(200) - %(120 ) is the area of the upper two-

thirds.

T ____“_____/E%:Z note: The upper two-thirds has height of 200mm.

150-138.30 Looking at the dimensions on the figure, we can see
=11.61 32;;-’;33*) that there is a height of 40mm above and 40mm below
' the cut-out circle within this upper two-thirds block.

This symmetry explains why the last term in the numerator, d,, is 200 (goes from z’ to the
midpoint of the circle).

OR

(300)(200)(150)—%(120)2(200)
(300)(200)—%(120)2
where (300)(200) is the area of the solid rectangle and %(120 )?is the area of the

circle.
(Nt ), = %(200)(300)3 +(300)(200)(11.61)?

=138.39mm

y=

—i 4 2 2
(e ) = 5 (120) +7/,(120)(61.61)
I, =(1,0), — (1), =4.908x10° mm*

Bending stress design examples

Bending stress is not related to area and depends on more than one dimension (usually).
It turns out, not surprisingly, that for a rectangular section in bending, A - 0ash — o
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and b — 0. This is not surprising since we know that sections such as the wide-flange

section, with the majority of material away from the neutral axis, are most cost effective.
Design is best done using tables of common sections.

I I : . o
Often — and — are written as S, and S,, where S = “section modulus.” This simplifies
cl CZ

the use of tables.

eg. 1l
Given: Wood beam with rectangular cross-sect, is subjected to the load shown. density
=35 % O 0w = 1800 psi .

Find: Suitable size beam (base x height) from appendix A.

Simply supported beam (pin + roller), uniform load.

egl
] q = 420 b/t Ib 21 12in
e e e S E G 0Ll
max 8 - 8
12 ft =90,720 Ib*in (located at midpoint, skipped work)
) M 90720 -
Oalow = o — S =—— =50.40in
S 1800

From Appendix A, choose the lightest (smallest cross-sect area) beam that has a
section modulus S of at least 50.40 — choose 3”’x12”. (3’x12”” nominal

dimensions, 2.5”’x11.25” actual dimensions, s=52.73in° ) But we still have to
include the beam’s own weight:

h

b

{cross-section)

Beam weight = (area)(density)=( 2li5nm X 11.i2n5m )(35%3 )=6.8 %
12 ﬁt 121/,
2
00720 1 (68)(12)°(12) s
S = 8 — 51.22in% or S = (50.40 )( 225 ) = 51.22in?
1800 420

This is still smaller than the section modulus for the 3 x 12 in. beam, so that size is
satisfactory.

note: If c, #c,, then the problem is more complicated, but still follows the same basic
process.

note: We have ignored the phenomenon known as “lateral torsional buckling’, which
will be emphasized in the outline on steel design later on.

e.g.2
Given: beam supports the two-wheeled vehicle shown.
It may occupy any position on the beam. o, = 21.4ksi
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Find: M, and the corresponding S ;, .

eo 2 In terms of arbitrary distance z from the left:
£ 3 kip . 3 kip Support reactions:
#—\‘ KDZMA:B(288)—3(z)—3(z+60)=0
(= 6z+180, .
| | = B=——Kkip
ANy B=— 288
24 ft =288 m

ATE A 82180 o o, 1588-62,
288 288
x=0":V(0")=M(0")=0
‘=0 (0" ) 154862
28

M(0*)=0
0" <x<z:V(x)=248-62 M(X):‘[1548—62dX:1548—62X
288 o 288 288
ez () 159862 . 154862
288 288
‘2 vz 14867 o . 1548-62
288 288

2" <x<(z+60) :V(x)=15428—_62

_3 M(x)= 154288;62 ZJFJ~15428—62 _ 3dx

1
=——(x)(-114+2z)+3z
25 )

V(x) M)
15456z ‘E(X)('l 14+z)+3z posttive slope, but less steep because Vi{x) iz a
233 posttive constant, but less than mubial value
1548-6z .
“az Rl i no equation needed
288 1543-6z2
I - X 288
7z z+60
o equation needed I |
! l
z 7+60 288

M, = M(Z+60):—%(Z+60)(—114+Z)+3Z z¢[0,288-60]

=z . =99in,M__ =346.7kip*in S _ = 346.7

== = 16.2in°
21.4

note: could then use a table to choose an efficient beam size.
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Tapered beams
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To really minimize the amount of material, the cross-sect dimensions can be varied so as
to develop the maximum allowable bending stress at every section.

e.g.

Given: cantilevered beam with point load shown.
at every cross-section.

Find: h,sothat o =o

allow

A 11X B I

Shear

Shear deformation

o

h,
M.(5) 6px

allow —

1, 3, bh?
=~ bh X
(1)

—h = / 6 Px
bO-allow

note: If ¢, #c,, then the problem gets a bit more

complicated.

note: angle of taper must not be too large.

l-4| =

Y= L , where A = shear area
AG

If a shear force t acts on the upper
face, each side must have an equal
shear force (in the directions shown)
for equilibrium.

The shear forces create a distortion
as shown. 7 is called the shear strain
(radians).

Shear stress — strain diagrams appear
similar to the axial diagram that was
shown at the beginning of this
chapter.

1=Qy
where G = Shear Modulus of
Elasticity (material property)
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note: G=

k (skipped proof)
+v)

e.g.
Given: “bearing pad” with dimensions shown, subjected to force shown.
Find: 7, y, and d.

material 1

\ \ \Y
T=— y= d = htany = htan
ab 4 abG, 4 (abGl )
Ld
,#‘
! Tll
Shear stress in flexure
o — Y, From equilibrium of shear, the shear stress
C T T’[ T I\L \fﬂw Th in the vertical direction is matched with an
__ . equal shear stress in the horizontal direction.
— \P And, from equilibrium of force in the x
r—— direction,
(MM (M +dM)y
A IR (1) *[t(y)dx] = | JE s
Ty ¥
] : j ~Jy(da)
dx
The units match, since we have:
v ED*A1=15/,18) - 15/, 1(A)
L 4 3 The area A is the area shaded, not the entire
]y \ cross-sectional area.
| .

cross-sect view Ty = dX I* t(y) .[y

VQ,

T, = (General Formula) where Q = first moment” = IydA
I*t(y)
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note: In pure bending, V=0,s0 t=0. Also, M + dM = M in that case, so t=0.
2
For rectangular cross-sect, t(y) = b (base) and Q, = g(hT -y?)
3V(h* —4y?)
T, =———F""
g 2bh’
T occurs at y=0, which is the neutral axis.

(rect cross-sect) (skipped work)

max

_v (rect cross-sect) A=bh
2A

24

note: Although t was calculated as being horizontal, there must be vertical shear that is

equal, so V,_, is determined from the SFD. Area A is always the cross-sectional

arca.

note: Now it is possible to optimize the bending stress for a rect sect, although designers

still usually use tables.

e.g.
Given: Wood beam with rectangular cross-sect, is subjected to load shown.
=200 psi, o, = 1800 psi

Find: Optimal beam size (assume beam weight already included in load q).

Tallow

_ - qL?
q=4300/ft 5 " 92,880 Ib*in

HEEEEEN
B 430(12)

- 12 ft “-—  Supports: A=B= =2580lb=V,__,
92880(N/)
1800°= o = Ivlly T A - 55b7h2280 (1)
(——=bh*)
h 12
200 = 7, =Y _3(2580) 3870 2
b 2A  2(bh)  bh

(cross-sect) 2 eq, 2 unknowns;

h=16", b=1.21" (A, = bh =19.35in?)
note: h>>b, as expected.

note: (compare to e.g. 1 of the ““Bending stress design examples™ section) Even though
an overly large allowance for the beam’s own weight was provided, and very small

Ta0w 0 thiS beam was still about 2/3 the weight of the beam chosen in e.g. 1. Of
course, this is also largely due to the limited selection of available beams in the

Appendix A.

For circular cross-sect, t is complicated away from the neutral axis. But, we can still

find 1, which has been proven experimentally to be located at the neutral axis:
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t(0) = d (diameter) and Q, = %d3

= :—X (solid shaft) (skipped work) A = nr’

T max

4V r22 + 1,1, +r12 _ 2 2
mx =5 (——5————) (hollow tube) A= n(r,” —1,")
3A 1,7+,
note: Just like a rect sect, it is now possible to optimize a tubular section, although the
use of a table is more practical. Just make sure t < t__ after a size with appropriate

T

max

section modulus has been chosen from the table.

Wide-flange cross section:
¥
Although the resultant forces are located in the xy plane, there are
Blzizmr=i=i] forces distributed all over the upper flange. This creates a bending
. moment in the flange about the X axis and accompanying bending
stresses and horizontal shear stresses. The web has only vertical shear
stresses which can easily be determined. For the web, t(y) =t (web

thickness) and Q, = g(h2 —h12)+%(h12 —4y%),

Iy
h

= = = =
—PT

;

I= i(bh3 —bh’ +th}).
cross-sect view 12
- see next example for Q calculation of odd shape.
o 3VIb(h® —h ) +t(h " —4y)]
’ 2t(bh’ —bh,” +th,*)
(skipped work)

(wide-flange beam)

T .. OCcurs at the neutral axis

_ 3V(bh’-bh* +th*)

"™ " 2t(bh® —bh,’ +th,*)
note: a typical wide-flange beam design would be to design for ¢
then check 1<t

from a table, and

allow

allow *

e T and in this case is close to t,_, (within 10% plus or minus), so t_ is
1
sometimes used in practice. We will learn methods for calculating shear, which are more

often used in practice, in later chapters on concrete design and steel design.

note: t,, was also used in the design of bolted connections in chapter 1.
e.g.
Given: Location of neutral axis. | =69.65in*,V,,, =10000Ib.

max

Find: 7z, inweb.

X
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First moment from Q, = > Ad,
y A = area a distance >y away from neutral axis.

€8 4in
| | d, =distance from A ( A neutral axis) to z.
3.045in
z Sin Choose y in web above neutral axis:
7in
1955 Q, = (1x(7 - 4.955— y)[ y + =(7 - 4.955— y)] +
— lin 2
(Ix4)[ L+ (7 -4.955)] =12.3— =2
L 174955 4 2 _ 2
2 where 1x(7 —4.955-y) is the shaded area at the top
__ -|?___T__ ! of the web, and (1x4) is the flange area.
AT 7-4 9?5

? Z
y+%(?-4.955—y) }3’ Jz+—é-(495 -¥) OR
— -

e —— Choose y in web below neutral axis:

gl

Q, = [1x(4.955 - y)][y+%(4.955— vl =

Crogg-gect views
1
12.3-=y?
> y
as expected, where [ 1x(4.955 — y)] is the shaded area at the bottom of the web.

Q...x occurs wheny = 0. Since t(y) is constant, 7, also occurs wheny = 0 (a.k.a. the
neutral axis z)

. _VQ _ 10000(12.3)
0t 69.65(1)
note: r,, occurs at the neutral axis for almost any cross-section.

=1.8ksi

Shear flow

VQ, force

I ( dist

to be nailing or welding. Q would typically be found after a beam size has been chosen.
The strength of a weld is usually specified in terms of force per unit distance, as we will

see later on in the outline on steel design. So, the required weld strength = q (or % for

) where y is the distance at which there is

Shear flow = q,=1t*t(y) or q, =

the picture shown below). Nail and screw strength is usually specified in units of force F.

Nail spacing = s = E, where F (allowable force of the screw or nail) can be looked up for

a given nail type.
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q HERE, as opposed  For a “Box beam”, you can think of the segment
/ to HERE
| dx

- [ T

(box beam side view)

Since there is negligible o about the x axis for a
box beam, we need only consider ZFX =0,

RN which shows that © shown differs from the

Box Beam we’ve been calculating only in that t(y) is the
(cross-sect view)  vertical cross-sect thickness (same Q and I
(about the z axis) can be used). Since shear flow does not depend on thickness, there is
no difference in q. Q would be integrated over the shaded region above.

e.g.

Given: Box beam shown subjected to shear force V = 10.5 kN. Allowable screw force
(shear force for screw) F =800 N.

Find: Screw spacing s.

es L s B Q- (180)(40)(120) = 864x10°mm?
20 L et N | = %(180 +2%15)(280)° —%(180)(280 2% 40)’
120 =264.2x10° mm*
; ;
w92 (105()(21604.;5(??)?);10 =343
S :Z—F:M=46.6mm
o q 343
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Principal stresses

Gy Stresses are positive if positive face — positive direction or
negative face — negative direction.
(All stresses shown are positive with respect to these axes)

A
cos0, =—2= A, = A sech,
2

A
tan 0, :A—1::>A1 = A, tan0,
0

From ZFX =0 andz F, =0,

6, +c,, G©,-0C

O =5t = 5 0826, + 7, sin 20,

xlyl —

0, £[0°, 180°]

T sin20, + 1, c0s26,

These are the “transformation equations” for plane stress.
G, and Tt from these equations are the true maximum

max

stresses in a beam (except for the special case where they
occur out-of-plane). o and Tt , may occur at a location

Of (6 ) max> (O 4y ) max» (Txy ) max» OF MAy occur at a location

Gy b tand, where none of the above are maximized.

note: o, fora given region in a beam is the distributed

load q divided by the cross-sect thickness t at that
location.

note: o, usually compressive (negative in the above equations) since our distributed
loads act downward. o direction determined from bending stress and external

axial load (% + g ). 1 direction determined from inspection of the internal

vertical equilibrium (NOT SFD) (see below).
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z T reversed because location
=} is to the right of the point load.

crosg-gect .
o reversed because section

chosen is in upper portion of
beam.

> —s —

note: The beams of chapter five usually contain all three forces. Since o, depends on x

(distance along beam) and y (in relation to neutral axis), 6,, dependsonx andy, T,

depends on x and y, and 0, also varies between 0 and 180°, finding the exact location

and angle of 6, and t__ can usually only be approached through trial and error using

the transformation equations. For design, transformation equations are accounted for in
the safety factor, but can be checked as follows.

Principal Angles

The following is useful assuming that a location O within a beam has been chosen and

T..,0.. ,C. are known.

Xy ? XX ? yy

d Ty . o
From —oxixl 0, tan2(0))= ——— (critical angles for normal — “principal stress”)

1 XX c yy

Two solutions: 6, £[0,90°]and 6, €[90, 180°] which correspond to 6, and 6, though
not necessarily in that order. 6, and 6, differ by 90°.

O T Oy Ow " Ow.2 2 .
O pixpt = (O yixt Vmax = 5t ( > )" +1,, (skipped work)

GXX+ny Gxx—ny 2 2
prprZ = (lexl)min = 2 - ( 2 ) +txy

(could be greater magnitude than (G, )w.)

_ B B - .
note: T, =T, =0 (proof Mohr’s Circle — see next section)

note: The true min and max normal stress could be located “out-of-plane” (not
calculated)
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delyl _(Gxx _ny) ..
From ——— =0, tan2(0,) = (critical angles for shear stress)

de, 21,
Two solutions: 0, £[0,90°]and 6, €[90, 180°] which correspond to 6 and 0, though
not necessarily in that order. 0, and 6, differ by 90°.

-c ) c c

O ¥¥ 2 xplxpl
szlysl = (Txlyl)max = \/( 2 ) + Txy OR 2

Tx52y52 = (Txlyl)min = _(Txlyl)max

xp2xp2

G, +0
note: o, = % =0, = Oy (Proof Mohr’s Circle — see next section)
note: 6, =0, —45° (Proof Mohr’s Circle)
note: The true min and max shear stress is located out-of-plane if 6, , and ., , have
c c

the same Sigl’l: [(Tmax/min )about xpl = iﬂ and (Tmax/min )about xp2 = _$ ]
e.g.
Given: o, =12300psi o, =-4200psi 7, =-4700 psi
Find: prlxpl ! O-xp2xp2 ! szlysl ! szZysZ

eg -4200 27,
tan26, = — =260, =-29.67° =330.33°
O — Oy
< 0, =165.2° and 75.2°
- — O tO O —O .
- o 12300 . S 05 2(165.2) 7, Sin 2(165.2)
— ¥ = 13540 psi =0,

Owt0y, Oy~

+ 2% 0052(75.2) + 7, sin2(75.2)
2 B '

2
= -5440 psi = O yp2xp2
check:
o, +0 o, — O
XX yy i XX YW \2 + r 2
2 \/( 2 ) Xy

= -5440 and 13540, as expected
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X —(o,—0y)
1 . » tan 295 —_ X W
positive-positive 27

i termsg of X; . X
1 52

— 20, =60.4°

ave

Xy

6, =30.2° and 120.2°

X _(Uxx_o-yy)

5 fsin 2(30.2)+7,, c0s2(30.2)

=-9490 psi= 7

(04 -0y)

XS2ys2

sin2(120.2) +r,, c0s2(120.2)
=9490 psi= r

xslysl
positive-negative

m terms of X; . X;

2

Oy 4 r ? = 9490

GXX
check: + \/(—
2
note: 6, =0, —45°=165.2°-45°=120.2°
O-xplxpl - O-xpzxpz _ 13540 - ( —5440 )

Tysoys2 = > = > =9490

=0and o

note: Tystyst = —

note: 7,,1001 = Typayp2 wsixsi = Oxsaxs2 = Oave cOULd also be shown easily

Mohr’s Circle

6,+t0, ©0,-0C

_ XX yy .
G = 3 + c0s20, +1,, 8in20,
and
—(0n =0y .
Ty =— - —sin20, + 1, c0s20,

are the parametric equations of a circle.

G +0
Manipulation: Bring % to the left side of the top equation, square both sides of

the equation, and then add the two equations;

2 2 2 Ox Oy .2 2 . . .
—Oue) tTay =R =>R=,(———)" +1,, is the algebraic equation of a

(o 5

x1x1

circle.

Knowing 6,0, ,7

XX 2 yy? “xy *

- we cannow find t,,,, directly from o, , without knowing 6 (and vice-versa).

- we can construct the circle with an accurate scale and immediately see all values
of t,,,, and 6 ,,, and their corresponding 0, (by measuring 20, with a

xly x1x

protractor).
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note: 1, is positive downward, and 6 = 0° does NOT

necessarily start at the ¢ ,,, axis.

note: @ P,andP,,t=0
@ S,andS,,6=0,,
0, =0, —45°, all as expected.
Also,

diameter — (lexl)max _(lexl)min

(Txlyl)max = radius = 2

Procedure for drawing Mohr’s Circle;

First, draw axes.

Second, the center of the circle corresponds to (G, 0) .

ave

= A straight line through the center connecting
(04> Ty) and (o, — 1, ) is the circle’s diameter.

XX ? yy?

(2R also = diameter)

* 0=0 corresponds to (o, T, ), 20 =180

XX 2

corresponds to (o, —T,,

=  Draw the circle

* Find 1 and o values of interest directly from circle (if drawn with accurate scale),
or from transformation equations, or using trig.

If we know the stresses o

circle first in terms of these stresses and then move clockwise 20, for ¢

e.g.

Given: o, =12300psi o,

Find: 6.,,0.,,0,,.0.,.0

plr ™~ p2:

x1x12

=-4200psi ¢

xplxpl?

c and t

Jiyl> at a known angle 0,, we can construct the

xlyl?»

c,,and 1 .

XX ?

yy?

=—4700 psi
AND stresses at 6, = 45°

Xy

O-xp2xp2 ! szlysl ! szZysZ



e ,2(302")
52
I:G:clxl T x15r1)<
(Gxx ’Tx_',r:'
|
|
s _
25 ° 4200 \\ - UI 4700 .
S B BN v \Pzaés.z;l
_PE\ i =1 lexl
4700 |
I~
290"
(O Ty
gzazo.z”)
Ty 71

12300 +(—4200)

fnot to scale)

(o3
ave
2

= 4050

R_ \/( 12300 — (—4200)

2

7
o

- |
N

12300-4050=8250

4

prprZ = O-ave

700

)2 +(~4700)° = 9490

20 :tan‘l(@) =29.7°
8250

26,, =180 -29.7 = 150.3°
0,, =75.2°

— R =-5440 psi

20,, =360-29.7 =330.3° 6, =165.2°

prlxpl

szZysZ

T =R =9490

xslysl

psi

=0,, + R=13540 psi
260, =90-29.7 =60.3°
=—R =-9490 psi

20, =270-29.7 = 240.3°

0., =30.2°

6., =120.2°

33
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180-90-29.7 =60.3"

iné0.3"

34

Tyay1 = —94905in60.3° = -8245 psi
Oy = 4045 —9490c0s60.3° =-660 psi

- compare solutions with the previous example

2(45)=90"

297

9490cos60.3"

Beam deflections and rotations

e
e
s K:@z@ and@:tanezﬁ
o+ ds dx dx
2
———v+dv  So, @= dv = K=M
dx dx’ EIl
2
SRl
dx
vord Substitute BMD function(s) for M, and
_ integrate.
X
dx
Elv''"'= —q Elv''"'=V EIv'=M EIv'=EIO Elv = EId

g, V, M should be non-zero constant, or functions of x
(If non-prismatic beam, then I also depends on x)

note: small deflections only

Solving the second-order bending moment equation EIv''= M, yields two constants of
integration (for each segment of a beam). We need two sets of initial conditions (for
each segment). There are always enough to choose from, if the system is statically
determinate:

!

Simply-supported beam shown:

A C| |B
=
- boundary conditions:
i e V(A)=0
V() = v(CH

Vv r(cr) = \r({:ﬂ')



- continuity conditions:
e u(C)=v(C")
e V(C)=v'(C)
- symmetry conditions:
none

Cantilevered beam shown:

c B - boundary conditions:
| e UV(A)=0
| e V(A)=0
I - continuity conditions:
c e u(C)=v(C")
g e V(C)=V(C)
- symmetry conditions:
none
eg. 1l
Find: Deflection curve v,d,,, , .-
2
eg. 1 ¢ M :q—zl'(x)—qx(g):un—% (skipped work)
_,LlllillialuB L )
A £l Ox
2 2
L 2
R ¢ | B gx
El[v"dx = Elv _dex—dex
2 3
zﬁ—qi-l-cl
4 6
3 4
Eljz)'dx:Elz):ﬁ—£+clx+c2
12 24

symmetry condition: o' (—; )=0
gL Ly, q,L.s gL’
O=—(=)"—=(=)y+C,=>C,=——
£ g e =Gy,

3 3

gbx® ox* gL X,

12 24 24
boundary condition: v(L)=0o0r v(0)=0
C,=0

Elv=

2

= _%( L®—2Lx* +x%) J,,, located at v'=0

35
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2 3 3
abx” _ax”_ab =0:>x:£asexpected
4 6 24 2
4
Orax = (E): >qL .., located at v"=0
2° 384El
2
qTLX—QL:O:M:OorLasexpected
. . qL’
0  =uv(L)=lv(0)=
e =0 (L) = (0) =
e.g.2
Find: v, e0<x<a ,v,ea" <x<L,6,,0,,0,,
€.g 2 \IP
Pbx .
0<x<a :M=—— (skipped work
) 1  (skipp )
a b n . Pbx .
¢ a"<x<L:M=—-P(x—a) (skipped work)
L L
Pbx Pbx
Elv,"=— Elv,"=——-P(x-a
Uy L L, L ( )
2 2 a2
Bl = P2 ¢ Ely, = DX _P(x=a)’ o
2L 2L 2
3 3 a3
Elo, = 2% e xC, Elp, - P2 _POX=a) ¢ vic,
6L 6L 6
continuity condition: v,'(a”)=uv,'(a")
2 2 a2
Pba +Cl=Pba _P(a-a) +C, cancelling terms =C, =C,
2L 2L
continuity condition: v,(a” )=uv,(a")
3 3 a3
Pba +C1a+C3:P;i _P(a6 a) +C,a+C, cancellingterms=C, =C,
boundary condition: »,(0)=0
3
0= Pb(0) +C,(0)+C,=C, =0

boundary condition: v,(L)=0

3 a3 _ 2 12
o PRL)” _P(L=3)" .o\ ,c, ¢,—0=c, - —PR(L =b")
6L 6 6L
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0<x<a : a* <x<L:
_ _ _ 3
v, = PbX(LZ—bZ—XZ) v, = Pbx(Lz_bz_Xz)_P(x a)
6LEI 6LEI 6EI
P(x-a)?
6. =v' 12-p2—3x2) @, = 12 _p2—3x2)—-X=a)
1=V = 6LEI( ) 0 6LEI( ) =8

Fora>b, o, obviously ¢ (0,a™).

2 K2 2 2 2%
&Wauy=O:X=JL b S =0y b)_Pb(L b”) (a>b)
3 9+/3 LEI

in the flexure derivation can still be

note: The special case method for finding &,
used.

midpo int
note: Starting with the bending moment equation always works.

Superposition

For beams with common uniform loads AND point loads, where v(x) and O(x)can be
looked up in a table for the cases where each type of loading is acting alone,

Ul Z vand 0, = Z 0. Values can be found at specific points, or general (in terms
of x) formulas can be found.

Superposition can provide a useful shortcut for unusual loads too. But for these loads, it
is usually NOT possible to obtain a general formula v(x) and 0(x) for the whole beam
because point load formulas (which are different for the left side of the load versus the
right side) must be summed, and the shortcut involves an infinite number of point loads.
(see next example).

total

e.g.
Find: o,

Method 1: find M(x) and solve Elv"
Method 2: find —q(x) and solve Elv"'"" ¢ [ A,C]

Method 3: point load midpoint deflection formula (tabulated in the appendix of many

textbooks): 4:%((%2 —4a*) b>a (note: this equation works for all points

under the load, i.e. between A and C)

20, X
For an arbitrary point under the triangular load, the force P = qdx = q—LO dx and the

€9 €,

distance “a” 1s “x”. The deflection at C is the sum of the deflections caused by each
infinitesimal force.
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fln

7 X q, L’
5. = j P (312 —ax?ydx = o=
48El 240El
Al C |B
Method 4: point load deflection formula for a<x <L
L2 L2 from a previous example:
qdu = q':'_;) dx
2(31-_;;{ ///‘} (lD ‘la IS ‘l 7 and ‘lb1’ iS “L-Z,,
= —dx - | _ _ 3
L | PbX(LZ_b2_X2)_P(X a)
-1 | 6LEI 6El
Al [ | B ZqOZ
ﬁ method 3 P =qdx= L dz
— - L-
a . o(x)e[C,B] =] % d D)2 (-2 —x?)
20,2 P /1| Iy 3L°El
= D4
L ! goz(x—2)° o L(3L° -43L°x +60Lx* — 20x*)
| ! 3LEI 1440E|
Al C inB_
- method 4 (/) 240E|
a b
note: If the triangular load starts at a distance “‘k’” away from A, then the lower limit of
integration would be k.
note: There is no easy way to obtain a general formula for the beam, which includes
v(x) e [A,C], because under the triangular load, the location of v is to the left of
some of the “point loads™ and to the right of others (two separate formulas).
Moment-Area Method
Just like load equations, this method is particularly useful for cantilevered beams.
< — fd_'{ 9% =0, -6,
X de 46 _M Mdx
A B —=do=
|
| | 6, =1|do
| < i {
|| 2
% | | k - | 0,-6, = I Ngix (cantilevered beam)
| |

| 1 A
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t,, =ty —t
B/ B~ 'A

@(2751") =ds'
2

ds’=rdo

ds'=dtand r = x,

dt = x,d0 = x, M
EI

(x, with respect to B as shown)

note: Although it may not be obvious, the
assumptions made here are the same as
ds~dx and tan6~ 9.

B
t%=£dt

B
Md
ty—t, = [~

A

If A = fixed end, then t; =0,
t, =(x3 —x,)0, =0 (cantilevered)

(cantilevered beam)

Note: For simply supported beams, since the concavity is reversed compared to
cantilevered beams, 0 is oriented differently, and t is on the opposite side of the
deflection curve from o . (see second e.x.)

eg. 1l
Find: oy
ez 1
C
A
L2 L2

Method 1: find M(x) and solve El v"
Method 2: find —q(x) and try to solve Elv"""" ¢ [C, B]
Method 3: point load end point deflection formula and
superposition
Method 4: point load deflection formula for cantilevered beam
for a < x <L and superposition

Method 5: use area under % diagram
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0 L2 i1 ]—T 2 3
. x Leal’ Lo Lo a® 3L
: | *A — = il
| I°1/<1 | Kb = 2 sa)( RIS
qUf SO T O gl 3qu qu L 2,L
e 2 = 2 X - LI | [
SEI N A = ( )( SEl )[2 3(2)]
< RS
3 " 16ElI
C 3 3
L® 3L L
=1+ ()
A ) 16 El 16 El
ﬁ B B
A C B '[dt:
M c C
I

1 1
and M =—-=gx® +qLx—=gL?
2q q 2q

1 1

B L(L=Xx)(—=gx* +gLx——-qL?) s
:>J'X1M dX:J‘ 2 2 dx = gL

2 El o El 128El
Oy —0, =0y since 0, =0.

r qL® gL'  41qgLf
= 5, = [dt = (—) (—) =
A 16 El 16EI 128El 384El
e.g.2
Find: o,
es 2
N \|/P ds'=rd@
Aj D 2B dsxdt and rex,
. b Just as in the derivation for the cantilevered beam.
A X Pab(L+b) Pab(L+b)
by, =A% =og, 6EI
From similar triangles
Y ty,  pab to,
LA - L+b 6, =~
L 6LEI( )=p (O L)
2
_ Pab (L+b)
6 LEI

Pa’b a’b

to, =Axe =(5 e )_GLEI




Pa’bh?

S =t —(z+t., )=—20
o =ty, ~(2+% )=

M
EI
Pabl — A — =L"b{a}+ Pab 1)
LEI A1~ Awot” 2LEI 2LET
= Pab
2EI
- ™
}‘&2 Cz Cl
1 . Pab, @ L
A 1 a ¢ -
A= @ (1)
—Pa’b < Lt
2LEI =73
:_:— a
573
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note: In either of these last two examples, a general formula for  would have been
possible using the moment-area method.

Simple statically indeterminate system (bending)

For a vertically-loaded beam, there are two relevant equations of equilibrium. If there are
more than two unknowns (redundant supports) , then the extra equations needed may
come from v, L', V", V""" in terms of the unknown reactions. v, v', v'"', V""" combined

with the initial conditions, are the equations of compatibility.

eg. 1l
Find: M,, A, B, forthe propped cantilevered beam.

Equations of Equilibrium:
+TYF, 1A +B,-P=0=B,=P-A (1)

A C B

J/ K_“‘)ZMB:—Ay(L)+MA+Pb:0

M,
:>MA=AyL—Pb 2
A, B,
0<x<a : a"<x<L:
Elv''=A, Elv,"'= A, -P



Elv,"=-M, + A X Elv,"=-M, +A,a+[ A —Pdx
=—M,+Aa+AXx-Px-Aa+Pa
X2 A x* px?
Elo,"= -M \x+ +C, Elv,'=-M X+ - +Pax+d,;
_ 2 AX3 _ 2 AX3 3 2
Elv, = Max”, 2 +C,X+C, Elv, = Mox? A% P, Pax
2 6 2
+d,x+d,

Boundary conditions:

N 0,(0)=0=> ¢, =0
7 v,'(0)=0=¢c, =0
i L x  Continuity condition:
_ 2
BL___ v,'(a)=v,'(a)=>d, = (substituted (2))
¥
M(x) Boundary condition:
/\ uz(L)=O:>d2:%[BaZLP+2L3(Ay—P)]
a T
Extra continuity condition :
(equation of compatibility)
-M,
v(a)=v,(a)=
Pa® Pa® Pa® 1
0=- + —~ +=[3a’LP +2L°(A, -P 3
5 > "5 Tg [ (A, —P)I 3)

#unknowns: A ,M,,B, =3
# equations: 2 equil + 1 extra / compatibility = 3

A 2 _
A, = Pb(32I_L3 b°) B, = Pa (23|_|; a) M, = Pab;ll:2+b)
- we can now find o, 7, or v like any statically determinate beam

note: we could also find v for fixed A, load P, and no roller B, then find v for fixed A,

force B,, and no load P, and Zl)( B) =0, as our compatibility equation.

e.g.2
Find: A ,B,,M,, M for the fixed-end beam.

42



43

eg 2 P

M

M

=M
=M

i Lo

- Same exact differential equations as the previous e.x.-

But, now we have four unknowns.

| The extra equation comes from v,'(L)=0 =
T 4 equations
B

() +TYF A +B,-P=0=B,=P-A, (1)

K_JZMB = A(L)+M,+Pb-M; =0
d I —x =M,=M,-AL+Pb )

________ note: v,"""(L)=0,
v,"" (L) =0 because the equation is valid for
(=) a<x<L only.

Boundary conditions:
v,(0)=0=c¢, =0
L v »'(0)=0=c¢c, =0

0, (L)=0=d, :%L[ZMA—ZaP+L(P—Ay N

0,(L)=0=d, =%L2[3aP—3MA+2L(Ay—P)]

Extra conditions :
(equations of compatibility)

vi(a)=v,(a)=

%az(Aya—B’MA):%(a—L)2[2L(Ay —-P)-3M,+a(2P+A,)] (3)
v'(a)=v,'(a)=

%[LZ(AY—P)—azP—ZL(MA—aP)]:0 (@)

#unknowns: A ,M,,B My =4
# equations: 2 equil + 2 extra / compatibility = 4
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M, g

;L_-

7 ™
\
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Pab’ Pb? Pa’ Pa’b
M, = 2 A, = 3 (L+2a) B, = 3 (L+2b) M, = B
Superposition
e.g.
Find: A,B,,M,
q We can find the propped cantilevered reactions from a
point load from a table or from the e.x. in the previous
| section.
72 2 L
b N t N :jqdb(b)(sﬁ—bz):équ(L—x)(st—(L—x)z)
qax y y 2L3 : 2L3
2
_>57qL
— 128
3 - By % 2 _ % 2 —
b B — qua(a) (3L-a) J-qu(x) (3L—-x) 7qL
Yoo 21° : 21° 128

M, =jPab[L+b] =?qu(x)(L—x)[L+(L—x)] 3 9qL?

21°

0

21°

Bearing and shear stress for connections

Bearing stress = Fy/Apy= 0y

F = 32kN

dyop =15mm

=10mm
db ottom

t=15num

where A , could be the thickness of a bolt plate multiplied

128

by the diameter of the bolt, and F,, is the force acting on

that bolt.

Shear stress = V/A =1

and A could be the cross-sect area of a bolt at the location

of the bolt plate.

e.g.

where V is the shear force

Given: Force of 32kN on the angle bracket shown.
Find: op and zfor each bolt. (see below)



_ (M F
(Gb)top bolt — (tOtaI Ab ) (Ab)top
32x10°

=35.55MPa

 2(.015)(.015) +3(.015)(.01)

( ) ottom F

(05 bottom boit = ( A Do ) =35.55MPA
tOtaI Ab (Ab)bottom

Alop F

total A) A

3
= 32x10 — 54.32MPa

7/,[2(.015)” +3(.01)’]

ottom F
(7) bottom bolt Z(A” ) =54.32MPa
total A" Ao

(T)top bolt — (

Double Shear

S

P
T (d)’

T=

45
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Multiple Shear

d=25m
360 1b @ G000 lb;
i ?% 1111)) 60010
=2 | 631 |
I [EN]
| ] |
| a0 |
[ 17 ¥
T, =240
480
T =
T,=240
[k
T, =360
/
360 é

i

Strong and weak neutral axes, shear stresses, and bending stresses, for asymmetric
sections, can be found in graduate level courses on Advanced Mechanics of Materials,
Advanced Structural Analysis, or Advanced Steel Design. Buckling is another important
phenomenon that is left to more advanced courses.
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b
Appendix A
It
SECTION PROPERTIES FOR SAWN LUMBER AND TIMBER
Standard X-X Axis Y-¥ Axis
Dressed Area Moment Moment Board Weighti . .
Nominal | Size | of | ey | ok | i | Y E:::’;f;ﬁ'}i?“ g
Size (545) Section Inertia | Modulus | Inertia | Modulus per s
bx bxh A I 5 I 5 Lineal 25 30 35
in. in. in? in.4 in3 in.4 in3 Foot pef pef pef
1x3 §x% 1.875 0.977 0.781 0.088 0.234 % 0.326 0.391 0.456
1x4 =3 2.625 2.680 1.531 0.123 0.328 t 0.456 0.547 0.638
1x6 x5 4,125 10.398 3.781 0.193 0.516 i 0.716 0.859 1.008
1x8 x 5.438 23.817 6.570 0.255 0.630 i 0.944 1.138 .52
1x10 x5t 6.938 49.466 10.695 0.325 0.867 i 1.204 1.445 1.686
1x12 Fx 114 8,438 88,989 15.820 0.396 1.055 1 1.465 1.758 2.051
2x 30 4= 24 3.750 1.953 1.563 0.703 0.938 1 0.651 0.781 0.911
2x 4" 14 % 34 5.250 5.359 3.063 0.984 1.313 i 0.911- 1.004 1.276
2 X 6* 14 x 54 8.250 20.797 7.563 1.547 2.063 1 1.432 1.719 2.005
2 X B* X7 10.875 47.635 13.141 2.039 2.719 13 1.888 2.266 2.643
2x10* Wx% 13.875 98.932 21.391 2.602 3.469 13 2.409 2.891 3.372
2x 12 lex 114 16.875 177.979 31.641 3.164 4.219 2 2.930 3.516 4.102
2x14* 14x 134 19,875 290.775 43.891 3.727 4,969 24 3.451 4.141 4.881
3x4 24 % 3% 8.750 8.932 5.104 4.557 3.646 1 1.519 1.823 2,127
Ix6 24 x 54 18.750 34.661 12.604 7.161 5.729 14 2.387 2.865 5.342
3x8 2%} 18.125 79,591 21.901 9.440 7.552 2 3.147 3.776 4.405
$x10 2§ x 9 23,125 164.886 35.651 12,044 9.635 2 4.015 4.818 5.621
3x12 2 x 114 | 28.125 296.631 52.734 14.648 11.719 3 4,883 5.859 6.836
3Ix14 2413 | 35.125 484.625 73.151 17.253 13.802 3 5,751 6.901 8.051
$x 16 2> 154 | 38.125 738.870 96.901 19.857 15.885 4 6.619 7.943 9.266
4x4 x5 12,250 12.505 7.146 12.505 7.146 I 2127 2.552 2.977
4 x6 34 = 5 19.250 48,526 17.646 19.651 11.229 2 3.342 4.010 4,679
4 %8B X7k 25.375 111,148 30.661 25,904 14.802 2% 4.405 5.286 6.168
4x10 3ix ot 32.375 230.840 49.911 33.049 18.885 3 5.621 6.745 7.869
4x12 S¢x11% | 99.375 415,283 73.828 40,195 22,969 4 6.836 8.203 9.570
4% 14 34 x 13+ | 46.375 678.475 102.411 47.340 27.052 43 8.047 9.657 11.266
4x16 8¢ x 15 | 58.375 | 1,034.418 135.661 54.487 31,135 54 9,267 11,121 12,975
6x6 5 x 54 30.250 76.255 27.729 76.255 27.7129 3 5.252 6.302 7.352
6x8 5% T4 41.250 193.359 51.563 103.984 37.813 4 7.161 8.504 10.026
6x10 5x% 52.250 302,963 82.729 181.714 47.896 5 9.071 10.885 12.700
6x12 5fx 114 | 63.250 697.068 121.229 159,443 57.979 6 10.981 18.177 15.873
6x14 54 x 181 | 74.250 1,127.672 167.063 187.172 68.063 7 12.891 15.469 18,047
6x16 54 x 154 | 85.250 1,706.776 220.229 | 214.901 78.146 8 T4.800 17.760 20.720
6x18 5hx 174 | 96.250 | 2,456.380 280.729 | 242.630 88.229 9 16.710 20.052 23.394
6x20 54 x 194 | 107.250 | 3,398.484 $48.563 | 270.359 98.513 10 18.620 22,344 26.068
6x22 5bx 214 | 118.250 | 4,555.086 493.729 | 298.088 | 108.396 11 20.530 24,635 28.741
6x24 54x 234 | 129.250 | 5,948.191 506.229 | 325.818 | 118.479 12 22.439 26.927 31.415
8x8 X7 56.250 263.672 70.313 | 2638.672 70.313 5% 9.766 11.719 13.672
8x10 74 % o 71.250 535.859 112.81% | 333.984 89.063 6% 12.370 14.844 17.318
Bx12 74x 114 | 86.250 950.547 165.318 | 404.297 | 107.813 8 14.974 17.969 20.964
Bx14 74> 134 | 101.250 | 1,587.734 297.818 | 474.609 | 126.563 % 17.578 21.094 24,609
8x16 74 x 154 | 116.250 | 2,327.422 300.313 | 544.922 | 143.313 10% 20.182 24.219 28,255
8x18 7% 174 | 131.250 | 3,349.609 382.813 | 615.234 | 164.063 12 22,786 27.344 31.901
B x 20 74x 19 | 146.250 | 4,634.297 475.313 | 684.547 | 182.813 13% 25,391 30.469 35.547
8x22 TEx 214 | 161.250 | 6,211.484 577.818 | 755.859 | 201.563 144 27.995 33.594 39,193
 Bx24 74 %23 | 176.250 | 8,111.172 600.318 | 826.172 | 220.313 16 30.599 36.719 42.839
10x 10 o x 9% 90.250 678.755 142.896 | 678.755 | 142.896 B} 15.668 18.802 21,936
10x12 Hx114 |109.250 | 1,204.026 209.396 | 821.651 172.979 10 18.967 22.760 26.554
10x 14 9bx13% | 128.250 1,947.797 288.563 | 964.547 | 203.063 114 22.266 26.719 31.172
10x 16 odx 154 | 147.250 | 2,948.068 380.396 |1,107.443 | 233.146 154 25.564 30.677 35.790
10x18 9x 174 |166.250 | 4.242.836 484.896 (1,250.338 | 263.229 15 28.863 34.635 40.408




