Force equilibrium

For an object not to be accelerating, the following must be satisfied:
$\sum \mathrm{Fx}=0$
$\sum \mathrm{Fy}=0$
e.g. 1

Given: The total length of cord is 4 feet. $\overline{C D}=1.5 \mathrm{ft} . \overline{A C}=1 \mathrm{ft} . D=10 \mathrm{lb}$. Ignore mass and size of pulleys.
Find: Weight of B

$\overline{A B}=\overline{B C}=\frac{4-1.5}{2}=1.25 \mathrm{ft}$.
When 3 sides of a triangle are known: $\cos \phi=\frac{1.25^{2}+1.25^{2}-1^{2}}{2(1.25)(1.25)}=.68$
$\Rightarrow \phi=\cos ^{-1} .68=47^{\circ}$
$\theta=\frac{47^{\circ}}{2}=23.5^{\circ}$
Tension $=T=10 \mathrm{lb}$
$\longrightarrow \sum F x: 10 \sin 23.5^{\circ}-10 \sin 23.5^{\circ}=0$
$+\uparrow \sum F y: 10 \cos 23.5^{\circ}+10 \cos 23.5^{\circ}-F_{B}=0 \Rightarrow F_{B}=\mathbf{1 8 . 3} \mathbf{l b}$
note: if F_{B} had turned out to be a negative value, then our assumed direction on the far right diagram would need to be reversed.
e.g. 2

Given: Crate A is to be hoisted at constant velocity (\therefore this is a statics problem). Max tension in both ropes is 100 lb .
Find: θ and $\left(W_{A}\right) \max$
e.g. 2

$\cos \phi=\frac{5}{13} \Rightarrow \phi=67^{\circ}$
$\longrightarrow \sum F x: 100 \cos \theta-T_{1} \cos 67^{\circ}=0$
$+\uparrow \sum \mathrm{Fy}: 100 \sin \theta-T_{1} \sin 67^{\circ}-W_{A}=0$

But, $T_{1}=W_{A}$
From $\sum F x=0, \cos \theta=W_{A} \cos 67^{\circ} \div 100 \Rightarrow \theta=\cos ^{-1}\left(W_{A} \cos 67^{\circ} \div 100\right)$
Substitute θ into $\sum F y$:
$100 \sin \left[\cos ^{-1}\left(W_{A} \cos 67^{\circ} \div 100\right)\right]-W_{A} \sin 67^{\circ}-W_{A}=0 \Rightarrow W_{A}=51 \mathbf{l b}$ $\theta=78.5^{\circ}$
note: If W_{A} turned out to be >100, then we would need to redo the calculation, this time setting $\mathrm{W}_{\mathrm{A}}=100$ and solving for T_{2}. This would then yield the correct value of θ and T_{2}.
e.g. 3

Draw a free body diagram at E and solve for $T_{E C}$ and $T_{E G}$. Then, draw a free body diagram at C and solve for $T_{C D}$ and W_{B}.
note: Resultants in three dimensional space are easily found as well, using $\sum \mathrm{Fx}=\sum \mathrm{Fy}=\sum \mathrm{Fz}=0$
note: Methods that utilize equilibrium are generally preferred in engineering, whereas vector methods such as the parallelogram law and the "dot product" are typically used to illustrate math concepts.

Hibbeler, R.C. Engineering Mechanics: Statics Tenth Edition. Pearson. Upper Saddle River, NJ 2004.
Johnson, Erik. Lecturer. Univ. of Southern California. CE205. Fall 2004.

