
Method of consistent deformations – Redundant forces 
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These could be combined into a single integral (so 
that M is in terms if P, Q, 21 Xand,X ).  Then, it 

would just be 1  (from all forces) = 0. 
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Also, 
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  = deflection due to external loads (with redundant supports removed). 

11  = deflection at point 1 due to a unit force at point 1 

12  = deflection at point 1 due to a unit force at point 2 
 
This applies to couples and/or loads. 
We can use Castigliano’s Theorem, the unit load method, or any other method. 
There are two unknowns 21 X,X , and two equations (1), (2)   
Solve for the redundant supports.  Then, find the rest of the support reactions. 
(clearly 1X  and 2X  as pictured will have negative values) 
 
e.g. use conjugate beam 

 
        (conjugate beam) 



From equilibrium of the loaded conjugate beam, 
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e.g. use superposition 

We know that 
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(derived in the previous example).   
For this uniform load, if P = wdx, a = x, and b = L-x, then 
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When faced with fixed-end beams or propped-cantilevered beams, reactions can be determined 
by this approach regardless of load distribution, as long as we know the reactions for an 
arbitrary point load ( AM  for a propped-cantilevered beam from an arbitrary point load = 
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e.g. use unit load method 

 
We can approach this problem 
by using a system of equations 
such as (1) and (2) on the 
previous page.  We’ve already 
found “ 1 ”, “ 2 ”, and “ 3 ” 

from e.g. 2 in the “virtual force 
(unit load method)” section 
 
 
 
 
 

 

 
 



General:   
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:11  deflection in direction 1 due to 1 

:12  deflection in direction 1 due to 2 

:13  deflection in direction 1 due to 3 

:21  deflection in direction 2 due to 1 

:22  deflection in direction 2 due to 2 

:23  deflection in direction 2 due to 3 

:31  deflection in direction 3 due to 1 

:32  deflection in direction 3 due to 2 

:33  deflection in direction 3 due to 3 

 
 

1a )(  deflection at “a” in direction 1 
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1a )(  deflection at “a” in direction 2 
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1a )(  deflection at “a” in direction 3 
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note:  (1.2 )
ft

kips
(12ft) = 14.4 kips ; From symmetry, kips2.7
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note:  Making a table greatly simplified this problem.  Separating all of the deflections and 
summing is not necessary, but was done for clarity.  The end result would be the same. 
 
Using the method of consistent deformations in analyzing a frame would become intolerable if 
the problem involves as many redundant elements as a rigid frame usually does. 
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note:  16j2414   
(redundant to the 2nd degree) 
 
Two redundant elements; one in the reaction 
component (choose “e”) and the other in the bar 
(choose Cd). 
 
The horizontal movement at support e and the 
relative axial displacement between cut ends of 
bar Cd are zero. 
 
One way to think of it is: 

212 and   cause joints C and d to move closer 
to each other along the line Cd.  The cut ends 
overlap. 
 
For beam Cd to be one piece, its unknown 
internal force 2X , must shorten the beam by 22  
so that the cut ends no longer overlap.  The end 
result is a shorter beam Cd, but no displacement 
between cuts. 
 
 
 
 



 
 

 
 
note:  Deformation must always be considered when the truss is statically indeterminate.  Using 
method of sections, for example, would not work because it would yield a singular solution. 
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