Method of consistent deformations - Redundant forces

$$
\Delta_{1}^{\prime}+\Delta_{11}+\Delta_{12}=0
$$

These could be combined into a single integral (so that M is in terms if $\mathrm{P}, \mathrm{Q}, \mathrm{X}_{1}$, and X_{2}). Then, it would just be Δ_{1} (from all forces) $=0$.

Specifically, $\Delta_{1}=\int_{0}^{L} \frac{M\left(\frac{d M}{d X_{1}}\right)}{E I} d x$ (if using Castigliano's Theorem)

Also,
$\Delta^{\prime}{ }_{2}+\Delta_{21}+\Delta_{22}=0$
or
$\Delta_{1}^{\prime}+\delta_{11} \mathrm{X}_{1}+\delta_{12} \mathrm{X}_{2}=0$
$\Delta^{\prime}{ }_{2}+\delta_{21} X_{1}+\delta_{22} X_{2}=0$

$\Delta=$ deflection due to external loads (with redundant supports removed).
$\delta_{11}=$ deflection at point 1 due to a unit force at point 1
$\delta_{12}=$ deflection at point 1 due to a unit force at point 2
This applies to couples and/or loads.
We can use Castigliano's Theorem, the unit load method, or any other method.
There are two unknowns X_{1}, X_{2}, and two equations (1), (2) \Rightarrow
Solve for the redundant supports. Then, find the rest of the support reactions.
(clearly X_{1} and X_{2} as pictured will have negative values)
e.g. use conjugate beam

From equilibrium of the loaded conjugate beam,
$M_{A}=\frac{P a b^{2}}{L^{2}} \quad ; \quad M_{B}=\frac{P a^{2} b}{L^{2}}$
e.g. use superposition
 We know that $M_{A}=\frac{P a b^{2}}{L^{2}}$ for an arbitrary point load (derived in the previous example).
For this uniform load, if $P=w d x, a=x$, and $b=L-x$, then

$$
M_{A}=\int_{0}^{L} \frac{w d x(x)(L-x)^{2}}{L^{2}}=\frac{1}{12} L^{2} w
$$

When faced with fixed-end beams or propped-cantilevered beams, reactions can be determined by this approach regardless of load distribution, as long as we know the reactions for an arbitrary point load (M_{A} for a propped-cantilevered beam from an arbitrary point load = $\left.\frac{\operatorname{Pab}(L+b)}{2 L^{2}}\right)$
e.g. use unit load method

General: $\delta=\int_{a b} \frac{M m}{E I} d x+\int_{b c} \frac{M m}{E I} d x+\int_{c d} \frac{M m}{E I} d x$
δ_{11} : deflection in direction 1 due to 1
δ_{12} : deflection in direction 1 due to 2
δ_{13} : deflection in direction 1 due to 3
δ_{21} : deflection in direction 2 due to 1
δ_{22} : deflection in direction 2 due to 2
δ_{23} : deflection in direction 2 due to 3
δ_{31} : deflection in direction 3 due to 1
δ_{32} : deflection in direction 3 due to 2
δ_{33} : deflection in direction 3 due to 3
$\left(\delta_{a}\right)_{1}=$ deflection at " a " in direction 1
$=\delta_{11}+\delta_{12}+\delta_{13}=\left[\int_{a b} \frac{\left(m_{1}\right)^{2}}{E I} d x+\int_{b c} \frac{\left(m_{1}\right)^{2}}{E I} d x+\int_{c d} \frac{\left(m_{1}\right)^{2}}{E I} d x\right]$
$+\left[\int_{a b} \frac{m_{2} m_{1}}{E I} d x+\int_{b c} \frac{m_{2} m_{1}}{E I} d x+\int_{c d} \frac{m_{2} m_{1}}{E I} d x\right]+\left[\int_{a b} \frac{m_{3} m_{1}}{E I} d x+\int_{b c} \frac{m_{3} m_{1}}{E I} d x+\int_{c d} \frac{m_{3} m_{1}}{E I} d x\right]$
$\left(\delta_{a}\right)_{1}=$ deflection at " a " in direction 2
$=\delta_{21}+\delta_{22}+\delta_{23}=\left[\int_{a b} \frac{m_{1} m_{2}}{E I} d x+\int_{b c} \frac{m_{1} m_{2}}{E I} d x+\int_{c d} \frac{m_{1} m_{2}}{E I} d x\right]$
$+\left[\int_{a b} \frac{\left(m_{2}\right)^{2}}{E I} d x+\int_{b c} \frac{\left(m_{2}\right)^{2}}{E I} d x+\int_{c d} \frac{\left(m_{2}\right)^{2}}{E I} d x\right]+\left[\int_{a b} \frac{m_{3} m_{2}}{E I} d x+\int_{b c} \frac{m_{3} m_{2}}{E I} d x+\int_{c d} \frac{m_{3} m_{2}}{E I} d x\right]$
$\left(\delta_{a}\right)_{1}=$ deflection at " a " in direction 3

$$
\begin{aligned}
& =\delta_{31}+\delta_{32}+\delta_{33}=\left[\int_{a b} \frac{m_{1} m_{3}}{E I} d x+\int_{b c} \frac{m_{1} m_{3}}{E I} d x+\int_{c d} \frac{m_{1} m_{3}}{E I} d x\right] \\
& +\left[\int_{a b} \frac{m_{2} m_{3}}{E I} d x+\int_{b c} \frac{m_{2} m_{3}}{E I} d x+\int_{c d} \frac{m_{2} m_{3}}{E I} d x\right]+\left[\int_{a b} \frac{\left(m_{3}\right)^{2}}{E I} d x+\int_{b c} \frac{\left(m_{3}\right)^{2}}{E I} d x+\int_{c d} \frac{\left(m_{3}\right)^{2}}{E I} d x\right]
\end{aligned}
$$

$$
\left.\delta_{11}=\frac{1}{E I}\left[\int_{0}^{10}(-x)^{2} d x+\int_{0}^{12}(-10)(-10) d x+\int_{0}^{10}(x-10) d x\right]=1867^{k i p *} \mathrm{ft}^{3} / E I \quad \text { (right }\right)
$$

$$
\delta_{12}=\frac{1}{E I}\left[0+\int_{0}^{12}(-10)(x) d x+\int_{0}^{10}(x-10)(12) d x\right]=-1320^{k i p}{ }^{*} f t^{3} / E I \quad(\text { left })
$$

$$
\begin{aligned}
& \delta_{21}=\delta_{12}=-1320^{k i p^{*} f t^{3} / E I \quad(\text { down }) ~} \\
& \delta_{22}=\frac{1}{E I}\left[0+\int_{0}^{12} x^{2} d x+\int_{0}^{10} 12^{2} d x\right]=2016^{\mathrm{kip}^{*} f t^{3} / E I \quad(u p) ~} \\
& \delta_{23}=\frac{1}{E I}\left[0+\int_{0}^{12}(x)(1) d x+\int_{0}^{10}(12)(1) d x\right]=192 \mathrm{kip}^{*} f t^{3} / E I \quad(\text { up }) \\
& \delta_{31}=\delta_{13}=-220^{k i p * f t^{2}} / E I \quad(c c w) \\
& \delta_{32}=\delta_{23}=192^{k i p * f t^{2} / E I \quad(c w) ~} \\
& \delta_{33}=\frac{1}{E I}\left[\int_{0}^{10} d x+\int_{0}^{12} d x+\int_{0}^{10} d x\right]=32^{\mathrm{kip}^{*} f t^{2} / E I \quad(c w) ~} \\
& {\left[\begin{array}{lll}
\delta_{11} & \delta_{12} & \delta_{13} \\
\delta_{21} & \delta_{22} & \delta_{23} \\
\delta_{31} & \delta_{32} & \delta_{33}
\end{array}\right]=\left[\begin{array}{lll}
1867 & -1320 & -220 \\
-1320 & 2016 & 192 \\
-220 & 192 & 32
\end{array}\right]} \\
& {\left[\begin{array}{c}
7776 \\
-13478 \\
-1210
\end{array}\right]+\left[\begin{array}{ccc}
1867 & -1320 & -220 \\
-1320 & 2016 & 192 \\
-220 & 192 & 32
\end{array}\right]\left[\begin{array}{l}
\mathrm{X}_{1} \\
\mathrm{X}_{2} \\
\mathrm{X}_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
\mathrm{X}_{1} \\
\mathrm{X}_{2} \\
\mathrm{X}_{3}
\end{array}\right]=\left[\begin{array}{l}
1.53 \\
7.20 \\
5.16
\end{array}\right] \begin{array}{l}
\mathrm{kips} \\
\mathrm{kips} \\
\mathrm{kip}^{* \mathrm{ft}}
\end{array}}
\end{aligned}
$$

note: $\left(1.2 \frac{\mathrm{kips}}{\mathrm{ft}}\right)(12 \mathrm{ft})=14.4$ kips ; From symmetry, $\frac{14.4}{2}=7.2 \mathrm{kips}$
note: Making a table greatly simplified this problem. Separating all of the deflections and summing is not necessary, but was done for clarity. The end result would be the same.

Using the method of consistent deformations in analyzing a frame would become intolerable if the problem involves as many redundant elements as a rigid frame usually does.

$E=30,000 \mathrm{kips} / \mathrm{in}^{2}$
$\frac{L(f t)}{A\left(i n^{2}\right)}=1$ for all members
note: $14+4>2 j=16$
(redundant to the $2^{\text {nd }}$ degree)
Two redundant elements; one in the reaction component (choose " e ") and the other in the bar (choose Cd).

The horizontal movement at support e and the relative axial displacement between cut ends of bar Cd are zero.

One way to think of it is:
Δ_{2} and δ_{21} cause joints C and d to move closer to each other along the line Cd. The cut ends overlap.

For beam Cd to be one piece, its unknown internal force X_{2}, must shorten the beam by δ_{22} so that the cut ends no longer overlap. The end result is a shorter beam Cd, but no displacement between cuts.

$$
\begin{aligned}
& \underline{\text { member }} \quad S^{\prime} \quad \underline{u_{1}} \quad \frac{u_{2}}{\frac{S^{\prime} u_{1} L}{A}} \quad \frac{S^{\prime} u_{2} L}{A} \quad \frac{u_{1}^{2} L}{A} \quad \frac{u_{2}^{2} L}{A} \quad \frac{u_{1} u_{2} L}{A} \quad S=S^{\prime}+u_{1} X_{1}+u_{2} X_{2} \\
& \begin{array}{lccccccccc}
\mathrm{ab} & 36 & 1 & 0 & 36 & 0 & 1 & 0 & 0 & 36-25.6+0=10.4 \\
\mathrm{bc} & 36 & 1 & 0 & 36 & 0 & 1 & 0 & 0 & 36-25.6+0=10.4 \\
\mathrm{~cd} & 12 & 1 & -3 / 5 & 12 & -7.2 & 1 & 9 / 25 & -3 / 5 & 12-25.6+6.4=-7 \\
\mathrm{de} & 12 & 1 & 0 & 12 & 0 & 1 & 0 & 0 & 12-25.6+0=-13.6 \\
\mathrm{BC} & -24 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -24+0+0=-24 \\
\mathrm{CD} & -24 & 0 & -3 / 5 & 0 & 14.4 & 0 & 9 / 25 & 0 & -24+0+6.4=-17.6 \\
\mathrm{aB} & -60 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -60+0+0=-60 \\
\mathrm{Bb} & 64 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 64+0+0=64 \\
\mathrm{Bc} & -20 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -20+0+0=-20 \\
\mathrm{Cc} & 0 & 0 & -4 / 5 & 0 & 0 & 0 & 16 / 25 & 0 & -20+0+8.5=8.5 \\
\mathrm{Cd} & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0+0-10.6=-10.6 \\
\mathrm{cD} & 20 & 0 & 1 & 0 & 20 & 0 & 1 & 0 & 20+0-10.6=9.4 \\
\mathrm{Dd} & 0 & 0 & -4 / 5 & 0 & 0 & 0 & 16 / 25 & 0 & 0+0+8.5=8.5 \\
\mathrm{De} & -20 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -20+0+0=-20 \\
& & & & \Sigma & \boxed{\Sigma} & \underline{27.2} & -4 & & 4 \\
& & & & \Delta_{1} & \Delta_{2} & \delta_{11} & & \delta_{22} & \delta_{12}=\delta_{21}
\end{array} \\
& {\left[\begin{array}{l}
\Delta_{1} \\
\Delta_{2}
\end{array}\right]+\left[\begin{array}{ll}
\delta_{11} & \delta_{12} \\
\delta_{21} & \delta_{22}
\end{array}\right]\left[\begin{array}{l}
\mathrm{X}_{1} \\
\mathrm{X}_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

note: Deformation must always be considered when the truss is statically indeterminate. Using method of sections, for example, would not work because it would yield a singular solution.

Works Cited

Hsieh, Yuan-Yu, and S.T. Mau. Elementary Theory of Structures: Fourth Edition. Prentice
Hall. Upper Saddle River, NJ 1995.
Trifunac, Mihailo. Lecturer. University of Southern California. CE358. Fall 2005.

