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CLASSICAL STRUCTURAL ANALYSIS



Classical structural analysisis concerned with methods for finding axial forces, shear
forces, and interna moments, within structures, when the applied external forces are
known. Whereas “statics” deals with the equations of static equilibrium, which can be
used to find internal forces (axial, shear, and moments) for statically determinate
structures, classical structural analysis can handle more complicated structures that are
statically indeterminate. The equations of static equilibrium will still be important, but
now we also need to consider the properties of the materials that the structure is
composed of .

The Young’s Modulus of the material will be important, for example. We will aso need
to know something about the geometry of the cross-sections of members, such asthe
cross-sectional areaand moment of inertia. Thus, “statics” as well as “mechanics of
materials” are topics that are prerequisites for this topic: “classical structural analysis.”
There are other kinds of structural analysis, such as “finite element analysis,” but such
methods use algorithms that are better implemented using a computer. Classical
structural analysis, on the other hand, has been around for along time and is meant to be
performed by hand. In other words, the “classical” methods of structural analysis, herein,
are analytical methods rather than computational methods. We are still considering only
elastic behavior.

Conjugate beam method

u':_[%dx =dope (G:I%dx)
u:jo'dx = deflection (Szﬂgdxdx)

We create a “conjugate beam” and choose to load with w = % where M is the moment
along the actual beam (in terms of x).
Theshear V in the conjugate beam V = —Ide = —J.%dx =0 in the actual beam.

The moment M in the conjugate beam M = _[de = —”%dxdx =& inthe actual beam.

(positive M meansload w acts downward)
(signsof 5 and 6 are usually obvious from inspection)
1. Theslope at a given section of the actual beam equals the shear in the
corresponding section of the conjugate beam.
2. Thedeflection at a given section of the actual beam equals the bending moment in
the corresponding section of the conjugate beam.
fixed end < freeend
simpleend <>simpleend (roller <> roller)
internal connection <> externa interior support



i.e. if the actual beam has afixed support, then it cannot rotate or deflect, so the conjugate
beam is not alowed to have shear or moment .. the conjugate beam needs a free end

(0=05V=0 =0 M=0)
actual beam conjugate beam

The conjugate beam method is very fast for finding & and 6 at endpoints or supports,

because 5 and 6 for the endpoints of the actual beam are just the support reactions of the
conjugate beam.

note: It’s okay if the conjugate beam appears unstable.
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External work and internal work

Consider aload gradually applied to a structure. Assume alinear relationship exists
between the load and the deflection. This is the same assumption used in Hooke’s Law

in the previous chapter, and shown by experiment to be true within the “linear elastic”
range for most materials.

A
Then, W = J'Fds:%PA A = deflection (resultsin atriangular P versus A graph)
0



note: If another force besides P occurs at the location of P, further dA will occur without
further increasing the magnitude of P. P remains constant, so the additional work
done by PisPdA (rectangular P versus A graph). Thisisimportant in the

derivation of the unit load method later on.

| dA

2 S

Also, W = %Ce where C = externa couple moment

' |
Cods
' |

|

This external work is converted to internal energy (strain energy)
dw = Zmde
2

2
Using @:M or dG:M—dS:>dW:M ds
ds El El 2El
So, the total strain energy in the beam of length L, is
L 2
W = J'M dx
o 2El
For atruss (axia force S only),
: 1 1.SL, SL
Strainenergy W= =§(dL) ==5(—) = er member.
ay 28( ) 2S(AE) AE "
S°L :
So, W=>" for the entire truss.
2AE

Equating Externa and Internal Work

This concept can be used to find 6 or 6 at apoint.

eg.

€. \LP W@(ternal :%PDD
| _ CM2dx  F(=Px)Zdx P23
T 0 Ty, W =[5 = e e
e P 0 0
L 3
Equating = D, PL

FEI constant 3EI



This method is quite limited in application since it is applicable only to deflection at a
point of concentrated force. Also, if more than one force is applied to the system, a
solution becomes impossible since there will be many deformations.

Method of virtual force (unit load method)

unit (virtual) loading

(a) strain energies
(i.e. internal work contributes to the
shortening or elongating of internal fibers,
analagous to a beam with fibers shortened
above the neutral axiz and elongated below
the neutral axis)

Externa work must equal the internal strain energy.
%P1A1+%P2A2 :%Zs* dL

1 1

=(@é6==) u*dL

SW8=23urd,

Compared with the previous section, thisis amore useful derivation of interna strain,
which applies to multiple loads, none of which are required to be at the location in which
we want to find the deflection.

Now imagine that the actual loads P, and P, are gradually applied to case “b”.

Equating external work and internal strain energy yields;;

%(1)6+%P1A1+%P2A2 +1* A :%2u*d|_1 +%ZS* dl + > u*dL



1* A and Zu* dL arethe extra “rectangular” work values as described in the previous
section.

The strain energy and work done must be the same whether the loads are applied together
or separately, from conservation of energy.

1* A must cancel with > u* dL
e 1*A= Z u*dL orl1*0= Zu* dL where “1” in the second expression
corresponds to an external unit couple.

note: “1”and “u” are virtual values and "A","dL", and " 0" are actual values.

P, E
vy dA

U——s——1x—u ] |{ TY

We need to find dL and u in terms of actual, measurable, quantities.

MY gresay

(stress) = (strain) E = Z—L(E) where dx = length of fiber
X

(stress)(dx)  Mydx
= =

note: the upper case “M” corresponds to the moment from the “actual” values (moment
resulting from P, and P, in the picture above), while the lower case “m”
corresponds to the moment from the “virtual” unit force.

=dL =

and u = force = (stress)(area) = gdA

my .\ My Mmoo, 2
15 A=Y (=2 dA) (=L dx) = dx[y?dA But, [y2dA =1
YA )laz /{y {y
So,
. “Mm
1D:O?dx

0
where m = bending moment from unit load and M = bending moment from actual |oads

Also,



L
1*q= (‘)M—mdx
o El
m = bending moment from unit couple and M = bending moment from actual loads

Now is agood time to recap some of the minor assumptions that may not have been
explicitly stated so far:

Small angle approximations. These were used in the derivation bending stress formula,
stress = # , which has been used in this section. Small angle approximations are valid
for most structural engineering applications.

Neglecting of axial deformations. Nowherein this section did we include axial stress and
strain of the beam, only axial stress and strain of the “internal fibers.” This will be shown
in alater section to be a valid assumption.

Conservative forces. Consider abeam loaded by gravity. The beam will deform, and the
forces will thus hit the beam at an angle. This curvatureisignored in our force analysis,
since the difference in solutionsis negligible, aslong as the small angle approximation is
valid. Thisassumption has been used in previous chapters, and will continue to be used
in al later chapters as well.

Engineering strain, rather than true strain. This assumption was stated in the section on
“Hooke’s Law” in the previous chapter. This assumption was used in the current section

since the strain of the “internal fibers” was taken to be d—L rather than d—L
dx (dx —dL)

Engineering strain will continue to be used in later chapters, since the difference in
solutions is almost always negligible.

eg. 1
P ¥ 1 ‘ ?1
El 2 -
A c
- il @ @ €
IIT ]'_ g L} TF_]I
2 /2 .
member origin M 1, m, m.
BD B Fh - Fx h-x 0 1
-Fh -h ; X
' ' Fh h Iy X
BC C = X =X 5 X I



Fhx . hx

) (7)
deformation to left = j(Fh FX)(h X) ix +j dx + j4dx
E—lIF(333h3 +.08333h?L) (units of length)
LG G
deformation upwards = 0+ I dx+I—dx:0
El El
Fhx
h Lo(—— )(7) bo(——)(— )
rotation ccw = dex I L L dx+J' L L dx
El El

0 0 0

=E—1|F(.5h2 +.08333NL) (radians)

note: signs can betricky, which is one of the reasons why this method should be limited
to beams and very simple frames.

note: It doesn’t matter where we take our ““origins’ as long as we’re consistent.
2

note: This problem could have been solved using 3 l:
X

=—-Withgg. =0, asa

El
continuity condition.
eg.2
eg 2 _
- 1.2 kips/ft
b LA A A A A A
121t 3
101t 10ft
? N 4
@ D €




as _ m
member origin limit M n, 2 m

ab a 0 to 10 0 X 0 1

be b 0to12 L2 -10 X 1

-1.2(12) 12 1
o ¢ 0to 10 - @
= .86.4

note: m, here not simply equal to 0 or -10
because the reactions at ¢ look like : I

Wl

D, = j Mm, dx——[O I(—1.22x2 )(—10)dx+T(—86.4)(x—10)dx]

=7776

sk 3
K pEI " (right) (horizontal deflection at a)

D, = ijz dx——[O j(

kip* ft®
El

(x)dx+J.( —86.4)(12)dx]

=-13478

(down) (vertical deflection at a)

D, = ijde_—[o j(_l'zzxz)(1)dx+1j0(—86.4)(1)dx

R 2
= 1210 KiP* Tt
El

(cow)

note: In this problem, as a whole, moments that deform the structure clockwise, are
treated as positive. Those that deform ccw are negative. This determinesthe sign
convention for M and mvalues. Thisis not to be confused with the sign convention
for the solutions. Positive solutions = deformation occursin the directions
assumed on the unit force diagrams.

Instead of “dL” being a non-measurable quantity associated with internal “fibers”, it can
be the actual change in length of atruss member.

1*A=>u*dL dL= % S=internal forcein a given member due to actual loads

5 SuL
D=g — (truss
a g s

mternal force in agiven member dueto afictitious unit load at the point and in the
di rection where the deflection is sought



L = length of member

A = cross-sectional area of member
E = modulus of elasticity of member
m = total number of members

10

eg.
eg. B C D
40 40' 40’ 40’ 3
a I_) C (l e | P T

o Ldips
64 kips E = 30,000 —

in

24 24' 2 24

Not all L or all A arethe same, but for simplification theratio I%A\is alwaysthe samein

this example.
-24 24
-60 20 |, 20 .
64 0

12 T
16

36 36 12
48 64 (slapped work)

forces from actual loading
(kips)

-3/8
-5/16

-3/8

5/16
-5/16

3/16

9/16 316 T
(skapped work) 1/4

1

force from virtual unit loading
(ldps)

UL S
D=2 e 2™

member S u Su
ab 34 9/16 20.25
be 36 9/16 20.25
cd 12 316 2.25
de 12 316 2.25
BC -24 -3/8 0
CD -24 -3/8 9
ab -60 -15/16 56.25
Eb 04 1 o4
Be 20 -5/16  6.25
Ce 0 0 0
D 20 5/16  6.25
Dd 0 0 0
De -20 -516 625

> 202.0



11

E isconstant, so

=22 _ 50673 1t (down)
30000

note: Finding the rotation of, for instance, member bc is equivalent to finding the
relative displacement between ends b and c divided by the length bc.

Castigliano’s second theorem

“the first partial derivative of the total strain energy of the structure with respect to one of
the applied actions gives the displacement along that action”

A, = corresponding displacement (deflection or rotation) along P,
where P = particular force or couple

A _OW
dP

M %dx
2El

L
For aloaded beam, total strain energy W = J' (derived in the section titled
0

“External work and internal work’)

S°L

2AE

Note: M = M, +M, =m,P, + m,P,, where M = bending moment at any section
M, = moment at any section dueto load P,

m, = bending moment at any section due to aunit load in place of P,

For aloaded truss, total strain energy W = )’

The fact that M, can be represented by the product of m, and P, (and the samefor M,,

m,, and P,) and the fact that M can be represented by the sum of M, and M, , are both
important principles made possible by the principle of superposition.

Using the Chain Rule for derivatives (skipped work) ;

Castigliano’s Theorem for beams:  Castigliano’s Theorem for trusses :
dm ds
M(—— —)L
. (dP) o qda)

Yy El ' AE
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We can easily show that Castigliano’s Theorem and the unit load method are really one

in the same:
L L
Al:dW I(mP+m ,P)? dx — j2(m1H+m2P2)(ml+O)dX:IMmldx
dP, 5 2El » El
“Mm
Similarly, A, :I =i My dx , as expected.
0
note: Theorem appliesfor 0 calculations as well.
eg. 1
L 3
ew 1 P DP_DD_J‘( PX)( X)d :PL
J T E 3EI
a| b
L
eg.2

Castigliano’s Theorem clearly works with multiple loads and can also work at points
where aload is not present, by placing animaginary load P, at the point of interest and

setting up the equation for D, intermsof P,. Then, set P,= 0O either before or after
integrating/summing.

eg 2 : w Ww=15 k%
.- L L =5m
5 kN
Qz{i‘ﬁé} i cm?
Q ! * FI constant | =12000cm*
1l V- ox 0 _Wx3
L S 6L
dM =-xand dM =-1
dQ, dQ,
dm
i M( ) wL?
D, .[ dx = j oL dx = =1.3 cm (down)
0 0 El 30El

3

_wa since Q, =Q, =0

we’re using M =
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WX3
L(=—)(-1) 3
q. = [—S6L LS
! E 24E|

=.003 rad (ccw)

e.g. 3 (sametruss asthe truss examplein previous section)

e 3 B & D
—— _:>,_ S B e
Q
—IO 40!‘ 40f _IO' 33r
a b C d e L
o laps
64 laps E = 30,000 —
mn
29 24 24 249
-24+Q/2 24+ Q12
Q
0+ 5/ 20+5/12 Q —_
-60 +5/12 Q 20-512Q 0 - ' 20 - 5/12 Q
64
I6+340Q 36+34Q 12+ Q4 12+ QM4 B8
18- 003 64 laps 16+ Q:!\




member
ab
bc

cd
de
BC
CD
ab
Bb

B¢
26

Dd

De

S(ds/dQ)L

S ds/dQ A
36+340Q 34 27
36+340Q 34 27

2+1/4Q 14 3
2+14Q 14 3
24+12Q 12 -12
24+12Q 172 -12

-0 +512Q 512 =25
64 0 0
20-512Q -5/12 8.333

0 0 0
20+512Q 512 8.333

0 0 0

-20-5/12Q -5/12  8.333
> 36

(setting Q = 0)

14

- 30000

(Bt 5
D=2, AE

= .0012 ft (right)

note: This result may seem odd.
Sncethetop chordisin
compression, one might expect
to see movement at joint D to
the left.

The fact that joint D moves to
theright isentirely due to the
fact that our left pinis
immovable and our right roller
didestotheright. Thisis, in
fact, exactly how bridges are
constructed. Bridge structures
are exposed to the elements, so
the bridge sitson aroller to

allow for expanding/contracting due to temperature fluctuations. (See the diagrams
below) So, joint D would move to the right, as we’ve found.



15

beaimn

e.g 3 tuss

! = RSN

For beams in buildings, we should remember that the typical left pin/right roller is not
the reality. Typical beamsin buildings do not actually sit on rollers, but are pin/pin. The
left pin/right roller idealization for typical beams yields exactly the sameresultsas a
pin/pin, however, because of all of our beam assumptions. These assumptions include
assuming the supports are at the neutral axis (a perfectly valid assumption for typical
beams) which PREVENTS any horizontal reaction from creating a moment due to
eccentricity, the idea of conservative force which PREVENTS any horizontal reaction
from creating a moment due to the beam’s curvature, and the neglecting of axial
deformation. All of these assumptions result in pin/pin and pin/roller yielding identical
results. 1.e. we can use the methods in the following sections for finding redundant forces
and we would see that the horizontal forceis zero for the case of a pin/pin beam with
vertical loads, as would obviously be the case for a pin/roller. We can then use formulas
we already know from this and previous sections for finding deflections and we would see
that the vertical deflections are also identical for pin/pin versus pin/roller. Doesthis
seem reasonable?

A beam that is pin-pin is restrained against horizontal motion, whereas a beamthat is
idealized as pin/roller or roller/roller is not restrained. Intuitively, this makes a
difference. Intuitively, if subjected only to vertical force, the beam that is pin/pin will till
have horizontal reactions whereas the beamthat isroller/roller or pin/roller will not
have horizontal reactions, sinceit isfreeto move. However, these horizontal reactions
are small and, intuitively, are small enough to be neglected. In practice, thetypical
beams analyzed in this manner (simple supports) are checked for vertical force and
vertical deflections, which intuitively would NOT be SSGNIFICANTLY affected by the
pin/pin restraints. In practice, the typical beams are completely ignored when lateral
drifts are checked. So, luckily, we don’t need to conclude that all beam-related formulas
up to this point are false and develop new formulas. The fact that pin/pin or pin/roller
makes no difference for vertical forces, horizontal forces, and vertical deflections of our
typical beams seems reasonable, because in reality the differences would in fact be very
small.
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Unlike typical beams, the supports of moment frames and braced frames and trusses
should always be modeled exactly how they are actually built. Aswe will seein the
following sections, when we consider a system of beams or bars, such as a moment
frame, horizontal reactions will be developed from vertical forces. We will also consider
apin/pintruss. Unlike a beam, a trussthat is pin/pin is different than atrussthat is
pin/roller. Atrusswill have different forces and deflections, depending on the support
configuration.

Method of consistent deformations — Redundant forces

B 5 W
A +A; +A, =0 ‘ 1 ‘ 2 Jidalid
<o o
These could be combined into asingle integral (so
that M isin termsif P, Q, X,, and X,). Then, it ‘P ‘Q -
would just be A, (from all forces) = 0. j/ j LLL e
dm
L M(d)( ) P Q W
Specificdly, A, =] = L_dx (if using ‘ ‘
0 EE
Castigliano’s Theorem) A’ft — jﬁ\‘gj
“{1 or 1#X,
Also,
— s
A,+A, +A,, =0 An or 8%, An or 8y X
or X, or 1*X2‘
A1+, X, +8,X, =0 «y S \% N o
A48, X, +8,X, =0 ) A2 or 8,2 Azy or 855X,

A = deflection due to external loads (with redundant supports removed).
d,, = deflection at point 1 due to aunit force at point 1

d,, = deflection at point 1 due to aunit force at point 2

This appliesto couples and/or |oads.
We can use Castigliano’s Theorem, the unit load method, or any other method.

There are two unknowns X, X, and two equations (1), (2) =
Solve for the redundant supports. Then, find the rest of the support reactions.
(clearly X, and X, aspictured will have negative values)
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€.g. use conjugate beam

c.e. Pab Positive P;MT) fram
ELL load P acting on
pin-pin beam (simple

IL
s /AI\T ~*" ‘beam since no lateral
o < { :‘/T loads)
AU TR
M‘ b M Mp

e

_\Iega{ﬁ\-'e BMD from My
and My, acting alonc

(conjugate beam)
From equilibrium of the loaded conjugate beam,
Pab® . Pa’b
M A = T y M B = T
€.g. use superposition
Pab® . .
c.g We know that M , = 2 for an arbitrary point

il w
A|l LLLL L L L L LD load(derived inthe previous example).
3 For thisuniformload, if P = wdx, a= x, and b = L-x,
_ 2
then M, = Ij-wdx(x)(zL X) _ 1
0 L 12
When faced with fixed-end beams or propped-cantilevered beams, reactions can be
determined by this approach regardless of load distribution, as long as we know the
reactions for an arbitrary point load (M , for a propped-cantilevered beam from an
Pab(L +b) )
2L°

L*w

arbitrary point load =

e.g. use unit load method

o
e

12 kip/f 12kpge Ve can approach this

PP P Y P P Lol e ol Lo problem by using a
system of equations such

L as (1) and (2) on the
10 ft previous page. We’ve
already found “ D, ”,
“D,”, and “D,” from

e.g. 2 in the “virtual force

1 x3< — X 1 (uni_t load method)”
section

|
=
o




ah a -X 0 1 we need the defleciions al "a" fur
Ihe comtined lnadmg of (he unil
be b -10 X 1 foreasin 1, 2, 3

cd c x-10 12 1

Mm
bc El cd E
: deflectionindirection 1 dueto 1

: deflection in direction 1 dueto 2
. deflection in direction 1 dueto 3

General:

iy
=

=
N

iy
w

. deflection in direction 2 dueto 1
. deflection in direction 2 dueto 2
. deflectionin direction 2 dueto 3

N
=

N
w

. deflectionin direction 3 dueto 1

w
[y

. deflectionin direction 3 dueto 2

w
N

Q.Q.Q.Q.NQ_Q_Q.Q_Q_
N

w
[}

. deflection in direction 3 dueto 3

(d, ), = deflection at “a” in direction 1

:d11+d12+d13=[ab(rg1|) dx+gc( 1|) dX+c{1(rT|;1|) dx]

#[ TR e [T g (T2 [ [T dhr (TR o [T 0]
be bc

(d, ), = deflection at “a” in direction 2

=d21 +d22+d23 =[ J‘rnlmz dx + jrnlrnz dx + IMdX]

+[ ] (mZ) dx+j( ) )° dx+j( 2) dx]+[jm3 2dx+frn3 2dx+jmg’mzdx]
ab El El El

(d, ), = deflection at “a” in direction 3

=dy +dy, +dg = jmlTIS dx+ jmlr|n3 dx + ImIIETE dx]
be cd



Y ALLL VL UL Y 2m3dx]+[f( )
cd

a El be  El be  El

==
cd
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axs 1<) gy (”‘3) ox]

1 2 1 1 ip* 3 H
w=l f(—x) dx+f(—lO)(—lO)dx+§(x—10)dx] ~18674P" 107 (right)

1 12 10
d,, = =10+ [(-10)(x)dbc+ (X~ 10)(12)a] =
0 0
1 10 12 10
d; :E[ (j)(—x)(l)dx+ (j)(—lO)(l)dx+ (j)(x—lO)(l)dx] =
.- 3
d, =d,, = -1320KP fté (down)
. * 3
d,, :i[0+ljzx2dx+1J0122dx] — 2016 KIP ft/ (up)
Bl o > El
-k 3
d,, = = [0+ TOO(L)dk+ T(12)(1)dx] = 192KP ft/ (up)
B 0 El
- * 2
d,, =d, =—220KP ﬂél (cow)
kip* ft?
dg, =dy =192 P tél (cw)

1 10 12 10 kin* ft2
dgsza[ édX-{-ng-l— ng]=32 P ﬂél (CVV)

B, 8, B 1867 1320 -220)
8, 8,, 8| = |-1320 2016 192
8, 95, 531 220 192 32
7776 1867 -1320 -220 X, : X,
13478\ 4+ |.1320 2016 192| [X,| = | O $ X,
-1210 220 102 32|53 ! Xs

. * 3
_13p0KIP” 1t él (Ieft)

P 3
_200KIP ftél (Ieft)

— | 7.20

5.16

kips

kip*ft



note: (1.2

kips

ft

20

) (12ft) = 14.4 kips ; From symmetry, 144 7.2kips

1
2

note: Making a table greatly simplified this problem. Separating all of the deflections
and summing is not necessary, but was done for clarity. The end result would be the

same.

Using the method of consistent deformations in analyzing a frame would become
intolerable if the problem involves as many redundant elements as arigid frame usually

does.

e.g.
B & D

e.g.
a b X d

64 kips
Lo, 2 e 24
Ve

e
/\(
s

1*X,

E = 30,000 X p%] )
L( ft)
A(in*)

note: 14+4>2j=16

(redundant to the 2™ degree)

=1 for all members

Two redundant elements; onein the
reaction component (choose ““e”’) and the
other in the bar (choose Cd).

The horizontal movement at support e
and the relative axial displacement
between cut ends of bar Cd are zero.

Oneway to think of it is:
D, and d,, causejoints C and d to move

closer to each other along the line Cd.
The cut ends overlap.

For beam Cd to be one piece, its
unknown internal force X, , must shorten
the beam by d,, so that the cut ends no

longer overlap. Theendresultisa
shorter beam Cd, but no displacement
between cuts.
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ab
be
cd
de
BC
CD
aB
Bb
Bc
Cc
Cd
cD
Dd
De

s

36
36
12
12
-24
-24
-60
64
-20
0
0
20
0
-20

i
[¥S)

: o
5o

Qooooooc}oo‘—"—”—"’*
|
-k oo
L
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) 2

Su,L S4wu,L 1 Pt u; L u u, L ,

—1—A A2 1A EA 1 AE S=8'+uX;+uX,
36 0 1 0 0 36-25.6+0=104
36 0 1 0 0 36 -25.6+ 0= 10.4
12 72 1 9/25 3/5 12-25.6+64=-7
12 0 1 0 0 12-25.6+0=-13.6
0 0 0 0 0 -24+0+0=-24
0 144 0 0/25 R
0 0 0 0 0 -60+0+0=-60
0 0 0 0 0 6ALO0L0=64
0 0 0 0 0 -20+0+0=-20
0 0 0 16/25 0 -20+0+85=85
0 0 0 1 0 0+0-10.6=-10.6
0 20 0 1 0 20+0-106=94
0 0 0 16/25 0 0+0+85=85
0 0 0 0 0  -20+0+0=-20
06 272 4 A -3/5
A Ay 51 8y D=9

X, 0

% 0
't L 06 4 3/5

AE X, 4 % | g 0
2 = =
u, X 3
L 2 272 a5 4 (|2 #
—> x| |25
— kips
X, -10.6

member Cd is compressive

note: Deformation must always be considered when the trussis statically indeterminate.
Using method of sections, for example, would not work because it would yield a singular

solution.
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Castigliano’s compatibility equation (method of least work) —

Redundant forces

As mentioned at the beginning of the previous section, another way of finding redundants

is through Castigiliano’s Theorem:

dW
A ] dX, 1
A, dw | 19
1= | T
5 3 0
R dw
dXIl
eg.l
g1 Since eisa symmetrical midpoint,
1.2 kip/ft M. M, 1.2 kip/ft M ( dm )
o [TTTTLL.) o [IITTIIl. aw oM,
- =0or [———=—dx=0
J /He H
6 &t VERSN 61t dM. El
(dopeate=0
Ve =0 ] )
(due to symmetrical midpoint) Our other condition will be
dm
i dw M dH )
——=00r [———=2-dx=0
dH, El
(same problem was done in
previous section)
. —
dM dM
member origin  limit M dM. dH.
eb e 0to6  M,-1.2x* 0
2
ba b Oto10 M.-H.x-21.6 X
dueto 1.2
kip/ft load

“2” is in the numerator of the following expressions because we’re only using half of the

frame;
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dw 2 .6 1.2x3 10

— =0==[[(M.—- 1)dx+ [(M_+H _x—21.6)(1)dx] =0
am_ EI[(J)(e 2)() (I)(e e )(1)dx]

= .96M_ +3H_-15552=0 1)
dw 2 1

—=0= — M_+H_x-21.6)(x)dx] =0

dH, =g LM+ H, JOx)o]

= 3M_ +20H,-64.8=0 2)

Solving (1) and (2) yields H, = 1.525kips, M, = 11.4353kips* ft

Fromequilibrium, H, =1.53kips; M , = 5.08kips (skipped work)
Thisis exact to two decimals. Calculations for this problemin the previous section were
rounded, resulting in the slight difference in solution of M .

This example could just as easily of been solved by using the unit load method at the cut.
Method of least work is still too cumbersome for a highly redundant frame.

e.g. 2— Same a previous example, but apply the method of least work at ““a”” and

take 7776 | tobeknown. 12' c
A, = |-13478
-1210 Q 10°
il X3 1l
a —}Xl d
=
M=M,+M_ . +M, <

[—X,+ X, X] +[ =X, = X,x+10X, ] +[ X5 — 12X, + (10X, — X,X)]

1 10 dm 12
D, =—1 J(—X5+ X, x)( = Xx)dx+ [(—X,; — X,x+10X, )(10)dx
El o dX, 0
10 kip* ft®
+ ({(—Xg -12X, +10X, — X,;x)(10 - x)dx] =1867 X, —1320X,, — 220X,
1 10 dMm 12
D, =—1[ J(—X5 + X, x)( =0)dx+ [(—X; = X,x+10X, )(—x)dx
El o dX, 0
10 kip* ft®
+ ({(—Xg -12X, +10X, — X,;x)(-12)dx] =-1320X, + 2016 X, + 192X,
1 10 dMm 12
D, =—[ J(— X5+ X, x)( =-1)dx+ [(—X; — X,x+10X, )(-1)dx
El o dX, 0
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10 kip* ft?
# T(=X; 12X, +10X, = X,x)(-1)ek] =-220X, +192X, + 32X,
0
i 1867X, - 1320X, - 220X, S X, 153 | kips
= — | 7.20 | kips
13478) + | 1320 + 2016X, +192X; | — | ° = x| = ;
0 X 5.16 | kip*fi
-1210 220X, + 192X, + 32X
1.2x*

note: D, did not have to be worked out separately — the momentsM = 0, M =

and M = 86.4 could have been added to each respective integrand. The end result would
be the same.

note: regardless of what deflections you choose to separate, or whether you use the unit
load method or Castigliano’s Theorem, separating the moments in a table, before
integrating, is often a good idea.

eg.3
o w reactionson theleft in (1) and (2)
i a il/ P PR PR P PR R R Y are found from equilibrium of the
L wi 2M,
whole beam after e and are
s W .
O P PR PR A P P P ) known, respectively.
Pl c (m
T3v:L ET(from M, of
4 ' right side FBD)
C ]\-'Il Zy I\fIl G
! 5 )
2M, j‘ k (from T M, of
S M; _2M;| right side FBD) o
L 2 T :

2 B relative
wi_ W :
= M LT ¢ L L Ly BFa | tosane

' Our redundant unknown is a ccw
T 3wl 2My = g moment couple just to the left of the
4 L “T+ T pin, which decreases the relative

rotation (makes ¢, less steep) and
an equal cw moment couple just to the right of the pin, which decreases the relative
rotation (makes g more steep).
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So, we call these moments M, asshownin (2). In other words, we defined an M, that
causes some rotation (g, —q, " to cancel the effect of the pin). In the real beam, this

rotation is zero. So, =rotation from M, =0.

1

X= 0+.
_ 2

v )= My oy 2 I o,

4L
0" <x<L:

3wL 2M, x 3WL 2M,
V(x)=

4L 4L

_ 2 _ 2_ 2 _
M) -~ 3wL Zhljl gy =X 1.5Lx+L.5L )+4M (x—L)]

(equivalent to finding the BMD for (1) and (2) separately and summing)

X= L :
V(L )= -wL 2M;

. : M(L )=0

aw 1 T(_ B[ Lw( x> = 1.5Lx+4M,(x~-L)]

)(‘Z(XL‘L))dx=o

dM, Elo L
wL?
2 2-)
M, =W g WML 16 3,
16 4 L 8

note: Axia deformation is neglected for beams and frames in the method of consistent
deformations, least work, and other methods to come. But what effect does this have on
the accuracy of the calculations of redundant forces?
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Composite Structure

eg. 1
eg. 1 ) 5
W= | MZdL 5 S2L,
2El 2AE
W _y
dy

/2 2 min2
W=LI x ?sin‘a "
0 2El
H 2
N If (XY sina —P(x-L/2) dx
L2 2El
LY ?cos’a LY ’L,
L2 L2 2 AE 2AE,
dw _L}2xW sn’a
dy 0 El

L[ XY sina—P(x—'—Z)](xsina)
+ | dx
X L/2 El

Y cos’al YL,
+ + =

xWsina AE AE,
-P(x-L/2)

EIA
dx

BMD

0

NS SOLVE

Psina (> )L®
48

=Y = 3
(sn’a L i cos?a Py 'L E
3 A EA

(axial deformation and bending)

)

note: If a — 90° and E, — o, then we have a prop-cantilevered beamwithY = %

Choose values:
E= E,P=20,a=30°L=10, L, =12, 1= &(.3)4,A= p(:3)2, A =p(.1)?
= (skip work)

Y =12.47 (with axial deformation)
Y =12.50 (without inclusion of axial deformation)
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non-tigid Axial Deformation Only :
DC and FE deform axially;,

E No bending allowed in ADFB
@ E,=E,
k:J

L, =.4m d, =.004m

B
i
l L, =.3m d,=.003m
6 kN

b
] _
5 |5 compatibility method:
e b -
Sl S DEM, 1 Th+T,(2b)-126(30)=0 (1)
d_E:d_l:dz o T(3)  _ 2T(4) o
2 b E(Z(.oos)z) E(Z(.OO4)2)

T, =14175kN T, =.945kN (axial deformation only)
(different lengths and areas will result in different solutions)

Bending Only

ADFB deformsin bending ; no axial deformation
allowed in DC or FE
non-rigid
B Unit load method :

DYM, : R.(20)-1.26(3b) =0 = R. = 1.89KN

b b T*¥F,:189-126-R, =0= R, = .63kN
P—]26kN

0<x<2b : M(x)=-.63x
2b" <x<3b : M(x)=126x-3.78b

b

Ry 1.26 kN
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DEM,  4(b)=R.(2b)=0= R, = .5kN
T@; - T*¥F,:1-1/2-R, =0= R, = .5kN
1* T]
& 0<x<b :M(x)=-.5x
5 o, le) ~ b <x<2b” :M(x)=.5x-6
\L 2b* <x<3b:M(x)=0
RA RF
_ _ _ _ _ 3
D:?( .63x)(—.5x) dx+2jb( 63x)(.5x—Db) dx+3jb(1.26x 3.780)(0) ., _ -315b
0 El b El 2 El El
2 2 3
d:?(—.5x) dx+sz(.5x—b) it 0 - 1667D
o El b El El
3 3
D+dT, =0 315b° | .1667b T —0
El El

T, =-1.890kN T, =2.835kN (from equilibrium or from same processon T,)
(bending only)

To treat the structure as a composite member, we need the moment of inertia | for beam
ADFB, as well as “b” :
Take| = %(.006 )*m*,b=.3m

Choose T, asthe redundant:
.315b° N .16667b°T,
El El

2T, (4)
E('Z(.oo4)2 )

Total elongation of member DC = ( )+ =0

— T, =-1.888kN

The inclusion of axial deformation has no significant effect on the solution, for this
problem.

note: Previous analysis of the statically indeter minate one bay frame (with the beam
loaded uniformly) resulted in each vertical support reaction being equal to exactly one-
half of the total load (obviously the exact answer) despite the neglecting of axial
deformation. Thisis because this frame was symmetrical (there are no relative axial
displacements).
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Moment distribution method — Joint moments in a frame

82 =1 &I constant Take the propped-cantilevered beam shown. It
— — | hasno load. We’d like to know the general
%*—— T 8,=0 relationship between 6, and M, (end moment of
L member ab at “a”) or M, (end moment of

member ab at “b”)

4
5190 _4-0
dx
Initial conditions: v(0) =0 v(L)=0 v'(0)=06, v'(L)=0

L= x(1—%)29a (skipped work)

d’v -M I X

- M Mo =EL(a-6%)0
dx? El (X) L( L) a
so, |\/|ab=4E'Eea and Mba:ZE%ea
OR

M, =S,0,,where S, =S,, = member stiffness= 4Ek

where k, = k,, = stiffness factor :%
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Lock the structure so that there are four fixed-end beams. Find
the FEMSss, including the total moment M at the center (ccw).
Create an opposite moment shown (cw moment M) to “unlock”
the beam. Joint j now rotates through an angle 6. Now,
picture (e) is equivalent to picture (a) and we can proceed with
the moment distribution.

m, =S,,0 Sum of the moments must equal
m;, =S;,0 zero, so, (S, +S;, +S;;
m,. =S,0 +S,4) 06=M , whereM isthe
m, =S,,0 “external” moment at joint j

)

(al 6 areequa due to continuity)

If the members have the same E, but not necessarily the same |

M
orL,then 4E(k;, +Kk;, +k;. +k;;))0=M =6 :sz (2
> k includes all members that connect at rotating joint (can

vary depending on which end of beam)

From (1) and (2),
k.
m,-s, M 4Bl M _ CRVERERY
4E3 k L 4Exk >k

Kis
mjb :ﬂM = Dij

Kic
m,=—"M=D,M
>k
Kiq
mjd :gM = Dde

These are called distributed moments (DMs). D = distribution factor = %

Assumes constant E — usually the case since beams made of different materials are rarely
connected together.

note: D depends only on member dimensions. The individual moments are just ratios of
each other that add up to M — i.e. the “external” moment, M, is distributed among the
connecting beams, according to their relative dimensions (stiffnesses).

m,, My, m

c?

m,, - caled the carry-over-moments, need to be found.
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M, and M ., which were found on the previous page, can be equated with a “carry-

over-factor”’; M, =C M, ; C, =C,, :%
1 ) 1 ) 1 ) 1
So,  my =5 M My =5 M 2 My =5Mie > My =5 Mg

These are called carry-over-moments (COMS).
M, =(FEM),, + m, (=DM)+m, (= COM)

M, = (FEM), +m, (= DM)+m, (= COM)

note: Itisnot yet clear how to find end moments for a frame when there is more than one
joint that can rotate

note: sign conventions will become clear in the following examples

eg. 1
eg. 1
= . I
[T T J,l lipﬁ dll N lfps beam ba éo =
5 el E (Yoot Yao)
o 20 20 '
EI constant beam bc: AO =.6
| (60+ *a0)

Clockwise moments = positive (FEMs can be found in Appendix B)
(FEM),, =300 (FEM), =-300 (FEM ), =-100 (FEM ), =100 (skipped work)

M, =—(300+(-100)) = -200 (Total FEM at b)

Distributed moments: m,, = .4(-200) = -80kips* ft ; m_ =.6(—200)=-120kips* ft
Carry-over-moments: m,, = %mba = —40kips* ft ; m, :%moc = —60kips* ft
(COM has same sign as DM)

ab ba be cb
M,, = 220kips* ft
FEM 2300 300 -100 100 M. = -220kips* f
DM -80 -129\ M, = 40kips* ft
COM -40 = -60

) -340 220 -220 40
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If there are multiple rotating joint, then the joints must be continually locked and
unlocked until the carry-over-moments are considered negligible (see the following

example)

note: For al cycles: At afixed support, DM iszero. At ajoint acrossfrom afixed
support, COM is zero. For aspan with no load, FEM is zero (this does not necessarily
mean that M = O for that span).

eg.2
eg 2 1.2 kip/ft
Jo aln wly ade s aly afy®
12 ft
10 ft EI Constant

#

Beam ba = /O = .545 = Beam cd

Y0+ 12

Beam bc = /2 = 4545 = Beamcb

10+ 12

~1.2(12)?

(FEM ), = = —14.4kips* ft

(FEM ), = 14.4kips* ft
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(rigic) (joint b) (joint c) (rigid)
b ba be cb cd c
k//
~EL 0 545 4545 4545 545 0
FEM -14.4 14.4
11.4(.545) 11.1(.4515)
M =785 =6.545 6545 -7.85
- S =,
7852 L -6.545/2 /y\g Ty
coM =393 =-327 3.27 -3.93
3.27(.545) 3.27(.4545)
DM =1.735 49 -1.49 -1.785
T e
- L TR
17852, 1492 =l
coM = .8026 =-744 ¥ = 44 -.8026
744( 545) 744(_4545)
DM = 406 =338 -338 -.406
— S .
40612 L= -3382 N Tt
coM — 203 —-.169 = 169 -.203
.168(.545) 169(.4545)
DM =.002 =.077 -077 -.062
7 s -~
T T Tl
0022 L= 012 K —
COM = 46 =-048 & = (048 =036
.038(.545) 033(.4545)
DM =021 =.017 -017 -.021
i N -
/ \ ./- -
02172 L= 0172 -
coM —.01 —-000 =009 -.01
009(.545) .009(.4545)
D = 005 =004 -.004 -.005
& 5.08 10.2 =102 122 =102 =508
(after 6 cycles) (lip * 1)
eg.3
eg.3
12 kips 12 kips
1.2 kips/ft
a i ‘ d
AN AN |
10" 10" 20 10 10
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FEM

COM

DM

COM

DM

COM

DM

COM

DM

COM

DM

1

FEM

DM

COM

DM

COM

DM

COM

DM

COM

DM

ab ba be cb ed c
0 5 5 5 5 0
- - Since cb and cd have not yet been
-30 30 -4 40 -30 30 "balanced"” by a distributed
moment, the C.OM. is added to M,
5 s ‘ 710+ 2.5) 125
— T A e
25 =T TR o r’/
6.25 6.25
5 SRR
13 T 314
R‘“"HH
15T 50 . T
g_,_/’ff. e x"x\
78 78 T
Frow (his puml. oo, the C.0OM.s
34 34 beeome the sole FEMs, becansc all
- =T rolalional joinls have been babmeed by
20 = _ distributed moments
10 10
T
o =T T g
-0z =03
26.67 36.67 26.67 36.67 -36.67 26.67
(kips * ft)
(releasejoints “simultaneously’)
30 30 -40 40 -30 30
5 5 5 S5
SR Sl Ol T Gt
25 &= 25 =TT a5 sy 25
L
25 25 25 -1.25 e & :
e : 1 T L2 : . 7~ Jomtsarc balnced. From this
i £ o Fi i Y = SRR £ point on, the C.O.M.'s are the
; sl - i only FEMs.
a2 B w e =32 =32
B iy TR
fr L ~a =
16 16 16 =16
.08 .08 s e -.08 -.08 0
” -
o s © > o4 -0d
A2 02 02 -02
-16.67 36.67 -36€.67 36.67 -36.67 26.67
(kips ¥ ft)

note: So far, joint trandations are ignored in the moment distribution method. This can
have an effect on the accuracy of joint moments. Previous analysis of the one bay frame
(with beam uniformly loaded) resulted in the exact solution because it is symmetrical
(and hence there are no relative displacements in the columns), and there is no side sway,
from inspection. Lateral loading and/or non-symmetrical gravity loading can cause joint

translations.
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Modified stiffness method — Shortcut for certain special cases

b i PR g ecial cases:
M, =0 . . . .
b g = the most basic member with asingle DM at
\ jaand COM at g
8,=0 i l@ frame joint
join . .
af—=—" Y c bj = supported by apin
rigid fixed MR 6,=-6 _ _
support (by the cw positive cj = symmetrical
moment sign convention)
1 8=96 dj = antisymmetrical
d
frame joint
4EKB
] /_\/ |a
j W
REE{G % creates the appropriate
. : moment that cancels with 2EK6
General Bagieicase (o) in (1) because a pinned support
can have no moment
SEKO 4EK® | R
| +
@Eﬁg /_\t_’ = Qﬂ/’ R\I) U_ﬂ %Vﬁ
) General pinned support case (bj) ey 2EK6 EK6 )
2EKS 2EK6 4EK® 4EKD

Bl - Ry -

General symmetrical case (cj) 2EK6 2EK®

6EKO 6EKS 4EK6 4EK6
e ey - R R\
iw S LoB— ) KL

2EK6
General antisymmetrical case (dj) e

Basic: k;,'=k,, where k' = “modified stiffness factor”
. , .3
Pinned support: M, = 3Ek,,0 =4Ek,'0 , where k;, :ijb

Symmetrical : M, = 2Ek,.0 = 4Ek,.'0 , where k].c':lkjC
2



Antisymmetrical : M, = 6Ek,,0 = 4Ek ;"0 , where kjd'=gkjd
M =Ky R VR VI3 =
ja zkl jb zkl jc zkl id zkl
S 60 Llps 60 lups
a 2EI 2EI d 10 . 30
- 2EI ~“>  FEM, =FEM_ =(=—)%(==)(60)(40
\ J J be o (40)(40)( )(40)
10,,30,,
—(==)(——=)7(60)(40) = —225kips
AN - (555 )" (60)(40) p
J2A 2
3 15 * 40 20
A/_f\? <SS A el
ﬁ % “3 15 * 20 “ 20
modified stiffness:
Ko = %kba =.051 =k " (pinned/roller support)
Kic' =gkbC =.0751 =k ' (antisymmetrical)
Koo = Ky =.051 =k,
ab eb be ba be cb cd cf fc
K
Tk 1 0 2857 2857  .4286  .4286  .2857 2857 O 1
FEM -225 -225
DM 64.3 64.3 96.4 96.4 64.3 64.3
Sy
COM 32.15 32.15
% 0 3215  64.3 64.3 -128.6  -128.6  64.3 64.3 3215 0
(kips * ft)

note: only one cycle needed for this problem with modified stiffness approach

note: since the frame is symmetrical, we don’t really need to tabularize all of the

moments, but rather just half of the frame

This problem is solved without modified stiffnessin Hsieh (1995).

36

de
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Treatment of joint translations

L If there are joint translations, then
- M, =DM, +COM, +FEM,
6EKR. T, o 4t additiona joint translation moment
. g
. . o relative displacement, shown, results in negative
, ](]anhs%“lmnemcgl) - moment, shown
small angle approximation A
R=5(
eg. 1
e.g. 1l
6m
OkN c (y ) 3 |
b 8/3EI O 87 (Syok o Lok
6 (4) bc 6 ba
ab ba be cb
E" ;
Gk EI K 0 1/3 2/3 1
-6EIA -6ETA
FEM iz aE
2EITA 4ETA
a co 7 B
EIA /
COM T
57 AEIA —
bx b _]_:2_ -5EIA -4EIA 4ETA 0
= F = 2

method 1 JEID from M, =0 for member ab

L3
3
From ¥ F, =0 for the whole frame, QE!D =90= D:%
d
SEIA~ Je—9EIA =M, =-30kN*m M, =-24kN* m M, =24kN* m
e r

OR

Choose arbitrary FEM = -90 KN*m
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_ab ‘ba be cb

FEM -90 -90
DM 30 60
COM 15

¥ 75 -60 60 0

bx_?,éTD\-so
22.5from XM, =0 for member ab
method 2

From X F, =0 for thewhole frame, 22.5 = 9

Need correction factor of %2 5 for all forces and moments
a .
SIS 225 o M, =-30kN*m M, =-24kN*m M, =24kN* m

note: method 2 does not even use the formula M = —-6EKR. Snce the solutions for
method 1 and 2 match correctly, we know our derivation for M = —6EkR is correct.

Method 2 is more manageable, but how can we use method 2 if the loads are not only
located at the joints?



eg.2
2kN/m
T O
b 8/3EI )
3m G
4N EI
Im
_ 4
2KN/m
N N A
4kN
(a)
2.5kN L
(to unlock the pin)
()
2kN/m
L b & b o
-1.67|1.67 kKN*m N

4kN

-10.33 kN*m

39

(@)
_ab ba be cb
kl

K 0 1/3 2/3 1
FEM =3 3 -6 6
DM 1 2 -6
COM 5 -3
DM 1 2
COM 5

¥ -2 5 -5 0

o ¥

a 'j 1.5

2

(from XM, for

member ab)
(b)
a  ba  be b
FEM =00 =00
DM 30 60
1/
coM 15 L L o
¥ =75 -0 60 0

From XM, =0 for member aband ¥ F, =0 for the
whole frame, the correction factor is 2-522 5 where

From X F, =0 for thewhole frame,

the pin has a reaction of 2.5kN acting
left. This must be counter-acted as
shown in (b) since the beam does not
have a pin.

22.5 isfrom the previous example.
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So, moments for b:
ab  ba  be  cb

—8.33 —6.67 6.67 0
@+ ()= M,_,,=-1033 M, =-167 M, =167kN*m

note: moment distribution can be used to find moments that include the effect of sway for
asymmetrical vertical loadings, and for multi-story frames, but it quickly becomes
cumbersome to do by hand.

Slope-deflection method — Joint moments in a frame

N Consider member ab, whichis

EI Constant isolated from aloaded rigid frame

F (not shown).
\% Hé_}ﬁ:b) \ r'10 own

Sign convention: all values shown

are positive.
M,
a
4E16,  2EI6, 6EIA
M, = 4+ + (FEM
»= [ C 2 +(FEM),,
Mba:ZElea+4Ele 6EIA + (FEM),.
L L L?

Recall these values from the derivations in the sections on “Moment distribution method
and “Treatment of joint translations”.

Manipulating a bit;

M, = 2Ek, (20, +6, -3R_)+FEM

M,, = 2Ek,. (20, +6, —3R,.)+ FEM,,
Relativedisplacement A

R= LSp = L (Ry =Rya)

If joint “a” is a rigid support, then 6, =0 (i.e. (DM) ,=0)
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eg.l
M, +M,
M, +M, - M, | M,
o ) P 10, M.. [ M, +M,, 10
. //['\N—ra T oy 20 .
iy PN : LI P
i = c i Y M, +1"T:Q b = ok \J
b : M, +M,, £ 20 \l/ M, - M., 1 M, s M
/ / 20 15 M. +M, a0
/ / 10
1
/ EI constant II|'
! 3
f i lﬂl':ips_)
| /
!
|
d M, +M,, :
| & e A ! -5 M, d ,_ MaiM,
M“QT# ! R ¥ 20
10 ¥
M, +M, M, M,
o 10

Assume end moments are known. Thisis sufficient to find all forces at the joints, from
equilibrium. The result (all forcesin terms of end moments) is shown. But now thereis
only one equilibrium equation left (proof in e.g. 3) and we don’t yet know the moments.

M, = 2Ek,(q, —-3R)-FEM, = 2E(2'—o)(qb ~3R)-25

My = 2E(5)( 23, - 3R) + 25

For M, and M,,q, =0 since “a” is a rigid support
|
My = 2B(-5)(2, +9; )

My = 2E<%)(2qc +q,)

For M, and M,_, R= 0and FEM = 0 (no relative displacement since axial
deformation in ab and cd is neglected) (beam bc is also unloaded)

M., = 2E(5)(23, - 3R)

I
Mg = 2E(==)(q, -3R
0 = 2E(55)(d. ~3R)
For M4 and M ,q, =0 and FEM = 0 (rigid support at ““d”’)(beam cd is unloaded)

All Rare equal for thisframe (axial deformation in bc is neglected).

Including q,,,q,, R(or 2—[())) , there are 9 unknowns.
Equations:

6ab0ve+(Mba :_Mbc)+(MCb :_Mw)+[1o+(m%olvlm_5)+('vlc+olvldc):0]

=9 equations
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The last term in the above expression comes from ¥ F, =0 for the whole structure,
which is the extra equation of equilibrium mentioned previously.

Solving, yields:
g 5048 g _-1202 9295
c E b El El

M, =-5410 M, =-530 M,=530 M,=1780 M, =-1780 M, =-22.80
(kip * ft) (positive = cw)

All joint forces have already been found in terms of the moments, so they can be solved
for numerically, and bending moment diagrams can be drawn.

eg.2
[
. M =2E—(q,)
82 1.2 kip/ft 1|0
Bobeols alp sl wly oy afy o8 Mba=2E1—O(2qb)
12 fi For member ab, g, =0,R=0,FEM =0
10 ft EI Constant

I
M. = ZEE(qu +0.)-144

I
Mg = ZEE(ZqC +0,)+14.4

For member bc, R=0

|
=l
o

I
M =2E-5(20;)

My = 2E-(a.)
For member cd, g, =0, R=0,FEM =0
Additional equations: M, =-M_ . M, =-M,
254 ~  -254

Solve = =— =—
qb E| qc E|

M, =508 M, =1016 M, =-1016 M, =1016 M, =-1016 M, =-508
(kip * ft)

Thisis the same solution as the other methods, as expected.

Joint tranglations can often be related to each other through inspection. Sometimes joint
trandlations relationships are required in order to solve for the joint moments.
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Al _ AZ _ AS
snd sn(90-60) sn90

|
} From the Law of Sines:
|

b ¢ ] From inspection, we can see that member bc
/ / will deform as shown, with 6, =6, because
/ / if an equal and opposite forceis applied at c,
then member bc (and the frame as awhole)
/ X must deform back to its original position
/ (neglecting axia deformation in bc).




eg.3
e.g.3 _—(1)(9)2 _ in* —
Lip (FEM )y = — - —6.750kip* ft = —FEM
{; 1l e T L s _ 2
e (FEM ), = % = —21.333kip* ft =—FEM
2 f (skipped work)
|
d M, =2E—(q, - 3R,)
o ft 16 ft 15
1)
15 ft |
M, =2E—(29, -3
ba 15(2qb Rba)
2
e
- M, -2e——'(2q,+q,-3R,)-675
V9% +12°
©)
My = 2E———(2q,+0,~3R,)+675 ()
V92 +122
M, = 2E|—(2qc +0, - 3R, )—21.333 (5)
162 + 122
M, =2E—— (24, +q, —3R, )+ 21333 ©)
162 + 122
| I
Mg = 2E1—5(2qd -3Re) (V) My = 2E1—5(qd -3R.) (8
My, =—My, 9 My =-Mg (10) Mg =—Mg (11)

(15 unknowns; we need 4 more equations)

Additional equilibrium equations will introduce additional unknowns. In this case, aswe
will see below, introducing the additional equations of equilibrium (for each of the four
segments of the structure) will only help to eliminate two unknowns.
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Fb_-.: )
i /z"_"\.
— e -
o2 M,, TR, e
F_F //' M, MEF, (I +F, —(1)(9)-0
= Ca 4 Fy 12
L M / i
/ JEM,: F,(9)+F,(12)-(1)(8)(4.5)
DEM, M, +F (15)-M, =0 :: Vs -M,-M, =0
A Fo
M3 F e bﬂ—/
7, g
; —
%
L1 1 L J,JF
F, F, =F_
F - 1 Fo=F,
A F M
A A & £
OEM, i~ Fy(15)-M_,-M,, -0
7N
‘E'
ox 11.,-\‘* \\ I-st — ‘Fa'x ! 15
s od "'-\\
\\\ iz
™R F ~F —(I)16)=0 ™
i B ™
- | f
VEM,  F,(16)- Fy - (1)(16)(8) \5_;'—}—1: ]
~My~M, =0 T o
‘F'_ Fﬁ!'
16 o

10 unknowns here (moments treated as known)

12 equations.

Recall that we needed 14 equations, in this case, to solve for everything, since we needed
to gain 4 additional from before.

While we’re at it though, we can solve for joint forcesin terms of moments (shown below)
for later.
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0889(M ,+ M, —125(M, +M,,—40.5))

' s o, ~  066F( M +M, )
D667(M 1 M, ) M,, (J/ S
e LM
/ G B *
/ —.0889' M ,+ M, —1.25(M, +M_ +405))
- /S
0667(M +M,,) { _/
A 5 |
r \_,/ ;
M 0667(M,, +M,,) M

088K M+ M, —1.25M, +M,,—405))

o

038U M, +M,, —1.25 M, +M, - 405))
~ 0889 M ,,+M,, —1.25(M,,+ M, +184.5))

l — 088RG(M + M, —125(M, + M, +405)) AN

M,
i) 0667(M_,+M,, )
e

0667(M , +M,,) e

M mr \
\\
Ty
\\ 0667( M, +M,_) 0667( M, +M,_)
A8 b Nas
A ad!
M,
— 0889 M , +M,, —1.25( M, +M,, +184.5)) — 088 M 4+ M, —1.25(M, + M, +184.5))

note: If we want to simply know the static indeter minacy of the frame, then we can
concentrate solely on the picture above. We can consider the 18 unknowns (note that the
forces are already assumed equal and opposite, as drawn, but the moments are not). The
static indeterminacy will be the same, regardless of our method of approach.

12 equations+ (M, =-M,. )+(M, =-M 4 )+(M, =-M, )= 15 equations

18 unknowns — 15 equations = 3 — static indeterminacy of the frame

(3b+ r = 18, 3j = 15; 18 unknowns > 15 equations = indeterminate to 3" degree)
Returning to the slope-deflection equations, there are 15 unknowns and 13 equations (11

from before and the 2 additional from above). The additional two equations have not
been explicitly written here, but they can come from ¥ M =0(12),xF, =0(13) for the

frame as a whole, in terms of the joint moments shown above.

We still need two more equations, but all equilibrium equations have now been used (if
you try to use more equilibrium equations, solving will return a singular solution)

Our only option is to create two more equations by using deflection relationships.



Law of sines:

D+D, D D
sin(f, +f,) sin(90—f,) sin(90-f,)

f, :tan‘l(l—gz)z 53.13°

12
f,=tan™(==)=36.87°
,=tan(35)

1 .8 6
D,=.8D,+D,) (14 D,=6(D,+D,)  (15)
-D D
-1 (@6 S m—— (7
Re= ot (19 Ro= o @
Re=——2 (18 Re=—2  (19)
162 + 122 15

Instead of 2 more equations, we obtained 6 more equations and 4 more unknowns
(D,,D,,D;,D,). Butthisisfine— 19 equations, 19 unknowns

SOLVE
.035(82.8) 82.8 _755(82.8) .
L= . =—— (4 =————— radians
El El El

- 77(828) ~.95(82.8) - 53(828) _ A14(828) og

Ra=—""g Re =4 Re=—% Re=—H %‘t
11.6(82.8) 62(828) [ _1425(828) _ _10.7(828) .
11.6(82.8) 62(828) , _142%(828)  107(828)

D. =
El 2 El El *

Dl
M,=260 M_,=264 M, =-264 M, =-22 M, =22 M, =304
M, =-304 M, =-22.0 kips* ft

de



eg. 4
2kN/m
T T ..
b 8/3EI
3m om
4kN I
3m
a
1
2kN/m
] |-i
4KN (a)
4+
A,
[\/\

—
7.061

(b)

@+ (b) = M,
OR

MabZZE(I)

(@)

M, =

M

Mg
M.
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2E(1)

(0+q, -0)-3

ZZET(I)(qu+O—O)+3

2E(8/1
—ﬁ(qum—m—e

bc —

2E
(%3 ——=—(0+qg,-0)+6

Mb

C

OLVE =

M, =-2591 M,,
M, =-3818 M,

(b)

M, =

M, =

bc ™

cb —

2E(841)
N

=3.818
=7.091

%“)(owb)
i")@qb)

2E(/|)

(2qb +qc)

ct0p)

M, =—7.091

M,, =
SOLVE = M, =591 M, =1182 M, =

=2 M_,=5 M, . =-5 M,

(0+q,-0)-3

_Mbc
1182 M, =-7.091

=0 kKN* m
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M. =%(I)(2qb+0—0)+3

2E(8/ 1
M e =#(2qb +q,-0)-6

M

2E(81)
. =TA(2qc+qb—0)+6
My, =—My,

M, =0
OLVE =M, =-2 M_,=5 M,=-5 My, =0kN*m

4875 3

(9. L :E) radians

The methods presented in this chapter on Classical Structural Analysis put into practice
some of theideas illustrated in statics and mechanics of materials, namely, that the
distribution of forcesin aframeisinfluenced by not only overall geometry but aso by
relative member stiffnesses. Courses on Matrix Structural Analysis (or FEA) present a
more elegant method for solving for forcesin statically indeterminate systems, utilizing
linear and rotational deformation compatibility at every joint, for example, if beam and
column “elements” are used. FEA islessintuitive, but isthe method that is used by
structural analysis computer software due to its versatility and computational efficiency
when it comes to transforming anaysis methods into computer algorithms. Just as
courses on Numerical Methods should typically be taken after Differential Equations,
Matrix Structural Analysis should be taken after Classical Structural Analysis. The
methods for solving differential equations of motion for a simple system or for solving
for the member forcesin asimple frame, by hand, are entirely different, than the methods
or algorithms that would be used by software to solve more complex dynamic or static
problems. Courseson Matrix Structural Analysis and the related field of Finite Element
Analysis are typically taken at the graduate level.
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Appendix B: FEMs
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