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CLASSICAL STRUCTURAL ANALYSIS
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Classical structural analysis is concerned with methods for finding axial forces, shear
forces, and internal moments, within structures, when the applied external forces are
known.  Whereas “statics” deals with the equations of static equilibrium, which can be
used to find internal forces (axial, shear, and moments) for statically determinate
structures, classical structural analysis can handle more complicated structures that are
statically indeterminate.  The equations of static equilibrium will still be important, but
now we also need to consider the properties of the materials that the structure is
composed of.

The Young’s Modulus of the material will be important, for example.  We will also need
to know something about the geometry of the cross-sections of members, such as the
cross-sectional area and moment of inertia. Thus, “statics” as well as “mechanics of
materials” are topics that are prerequisites for this topic: “classical structural analysis.”
There are other kinds of structural analysis, such as “finite element analysis,” but such
methods use algorithms that are better implemented using a computer.  Classical
structural analysis, on the other hand, has been around for a long time and is meant to be
performed by hand.  In other words, the “classical” methods of structural analysis, herein,
are analytical methods rather than computational methods. We are still considering only
elastic behavior.

Conjugate beam method

slopedx
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M
'   (  dx
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M
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We create a “conjugate beam” and choose to load with
EI

M
w  where M is the moment

along the actual beam (in terms of x).

The shear V in the conjugate beam    dx
EI

M
dxwV in the actual beam.

The moment M in the conjugate beam     dxdx
EI

M
dxVM in the actual beam.

(positive M means load w acts downward)
(signs of  and are usually obvious from inspection)

1. The slope at a given section of the actual beam equals the shear in the
corresponding section of the conjugate beam.

2. The deflection at a given section of the actual beam equals the bending moment in
the corresponding section of the conjugate beam.

fixed end  free end
simple end simple end  (roller  roller)

internal connectionexternal interior support
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i.e. if the actual beam has a fixed support, then it cannot rotate or deflect, so the conjugate
beam is not allowed to have shear or moment  the conjugate beam needs a free end
( 0M00V0  )

The conjugate beam method is very fast for finding  and at endpoints or supports,
because  and for the endpoints of the actual beam are just the support reactions of the
conjugate beam.

note:  It’s okay if the conjugate beam appears unstable.

e.g.
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External work and internal work

Consider a load gradually applied to a structure. Assume a linear relationship exists
between the load and the deflection. This is the same assumption used in Hooke’s Law
in the previous chapter, and shown by experiment to be true within the “linear elastic”
range for most materials.

Then, W = 



0

P
2

1
Fds deflection (results in a triangular P versus  graph)
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note:  If another force besides P occurs at the location of P, further d will occur without
further increasing the magnitude of P.  P remains constant, so the additional work
done by P is P d (rectangular P versus  graph).  This is important in the
derivation of the unit load method later on.

Also, W = C
2

1
where C = external couple moment

This external work is converted to internal energy (strain energy)

dW = Md
2

1

Using
EI2

dsM
dW
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Mds
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M

ds

d 2
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

So, the total strain energy in the beam of length L, is

W = 
L

0

2

EI2

dxM

For a truss (axial force S only),

Strain energy W = .memberper
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So,  AE2

LS
W

2

for the entire truss.

Equating External and Internal Work

This concept can be used to find  or at a point.

e.g.
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This method is quite limited in application since it is applicable only to deflection at a
point of concentrated force.  Also, if more than one force is applied to the system, a
solution becomes impossible since there will be many deformations.

Method of virtual force (unit load method)

External work must equal the internal strain energy.

 dL*S
2

1
P

2

1
P

2

1
2211

 1dL*u
2

1
)1(

2

1

Compared with the previous section, this is a more useful derivation of internal strain,
which applies to multiple loads, none of which are required to be at the location in which
we want to find the deflection.

Now imagine that the actual loads 21 PandP are gradually applied to case “b”.

Equating external work and internal strain energy yields ;
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 dL*uand*1 are the extra “rectangular” work values as described in the previous
section.

The strain energy and work done must be the same whether the loads are applied together
or separately, from conservation of energy.
*1 must cancel with  dL*u

i.e.  dL*u*1 or  dL*u*1 where “1” in the second expression
corresponds to an external unit couple.

note: “1”and “u” are virtual values and ""and,"dL",""  are actual values.

We need to find dL and u in terms of actual, measurable, quantities.


I

My
stress at y

(stress) = (strain) E = )E(
dx

dL
where dx = length of fiber

dA
I

my
)area)(stress(forceuand

EI

Mydx

E

)dx)(stress(
dL 

note:  the upper case “M” corresponds to the moment from the “actual” values (moment
resulting from 21 PandP in the picture above), while the lower case “m”
corresponds to the moment from the “virtual” unit force.
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So,


L

0

dx
EI

Mm
*1

where m = bending moment from unit load and M = bending moment from actual loads

Also,
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
L

0

dx
EI

Mm
*1

m = bending moment from unit couple and M = bending moment from actual loads

Now is a good time to recap some of the minor assumptions that may not have been
explicitly stated so far:

Small angle approximations. These were used in the derivation bending stress formula,

stress =
I

My
, which has been used in this section.  Small angle approximations are valid

for most structural engineering applications.
Neglecting of axial deformations. Nowhere in this section did we include axial stress and
strain of the beam, only axial stress and strain of the “internal fibers.”  This will be shown
in a later section to be a valid assumption.
Conservative forces. Consider a beam loaded by gravity.  The beam will deform, and the
forces will thus hit the beam at an angle.  This curvature is ignored in our force analysis,
since the difference in solutions is negligible, as long as the small angle approximation is
valid.  This assumption has been used in previous chapters, and will continue to be used
in all later chapters as well.
Engineering strain, rather than true strain. This assumption was stated in the section on
“Hooke’s Law” in the previous chapter.  This assumption was used in the current section

since the strain of the “internal fibers” was taken to be
dx

dL
rather than

)dLdx(

dL


.

Engineering strain will continue to be used in later chapters, since the difference in
solutions is almost always negligible.

e.g. 1
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note:  signs can be tricky, which is one of the reasons why this method should be limited
to beams and very simple frames.

note:  It doesn’t matter where we take our “origins” as long as we’re consistent.

note:  This problem could have been solved using BABC2

2

with
EI

M

dx

d



 as a

continuity condition.

e.g. 2



9
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(down) (vertical deflection at a)
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(ccw)

note:  In this problem, as a whole, moments that deform the structure clockwise, are
treated as positive.  Those that deform ccw are negative.  This determines the sign
convention for M and m values.  This is not to be confused with the sign convention
for the solutions.  Positive solutions  deformation occurs in the directions
assumed on the unit force diagrams.

Instead of “dL” being a non-measurable quantity associated with internal “fibers”, it can
be the actual change in length of a truss member.

 dL*u*1 dL =
AE

SL
S = internal force in a given member due to actual loads


m

1 AE
SuL

(truss)

u = internal force in a given member due to a fictitious unit load at the point and in the
direction where the deflection is sought
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L = length of member
A = cross-sectional area of member
E = modulus of elasticity of member
m = total number of members

e.g.

Not all L or all A are the same, but for simplification the ratio A
L is always the same in

this example.

  )1(
E

Su

AE

SuL

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E is constant, so


000,30

202
 .00673 ft (down)

note:  Finding the rotation of, for instance, member bc is equivalent to finding the
relative displacement between ends b and c divided by the length bc.

Castigliano’s second theorem

“the first partial derivative of the total strain energy of the structure with respect to one of
the applied actions gives the displacement along that action”

P corresponding displacement (deflection or rotation) along P,
where P = particular force or couple

dP

dW
P 

For a loaded beam, total strain energy W = 
L

0

2

EI2

dxM
(derived in the section titled

“External work and internal work”)

For a loaded truss, total strain energy W =  AE2

LS2

Note:  M = ,PmPmMM 221121  where M = bending moment at any section

1M = moment at any section due to load 1P

1m = bending moment at any section due to a unit load in place of 1P

The fact that 1M can be represented by the product of 1m and 1P (and the same for 2M ,

2m , and 2P ) and the fact that M can be represented by the sum of 21 MandM , are both
important principles made possible by the principle of superposition.

Using the Chain Rule for derivatives (skipped work) ;

Castigliano’s Theorem for beams :       Castigliano’s Theorem for trusses :


L

0

1
1 dx

EI

)
dP
dM

(M


AE

L)
dP
dS

(S
1

1
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We can easily show that Castigliano’s Theorem and the unit load method are really one
in the same:

  
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Similarly, 
L

0

2
2 dx

EI

Mm
, as expected.

note:  Theorem applies for  calculations as well.

e.g. 1
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)x)(Px(
 =

EI3
PL3

e.g. 2
Castigliano’s Theorem clearly works with multiple loads and can also work at points
where a load is not present, by placing an imaginary load 1P at the point of interest and

setting up the equation for 1 in terms of 1P .  Then, set 1P = 0 either before or after
integrating/summing.
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a .003 rad (ccw)

e.g. 3   (same truss as the truss example in previous section)
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 
30000

36

AE

L)dQ
dS(S



= )right(ft0012.

note:  This result may seem odd.
Since the top chord is in
compression, one might expect
to see movement at joint D to
the left.

The fact that joint D moves to
the right is entirely due to the
fact that our left pin is
immovable and our right roller
slides to the right.  This is, in
fact, exactly how bridges are
constructed.  Bridge structures
are exposed to the elements, so
the bridge sits on a roller to

allow for expanding/contracting due to temperature fluctuations. (See the diagrams
below)  So, joint D would move to the right, as we’ve found.
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For beams in buildings, we should remember that the typical left pin/right roller is not
the reality.  Typical beams in buildings do not actually sit on rollers, but are pin/pin.  The
left pin/right roller idealization for typical beams yields exactly the same results as a
pin/pin, however, because of all of our beam assumptions.  These assumptions include
assuming the supports are at the neutral axis (a perfectly valid assumption for typical
beams) which PREVENTS any horizontal reaction from creating a moment due to
eccentricity, the idea of conservative force which PREVENTS any horizontal reaction
from creating a moment due to the beam’s curvature, and the neglecting of axial
deformation.  All of these assumptions result in pin/pin and pin/roller yielding identical
results.  I.e. we can use the methods in the following sections for finding redundant forces
and we would see that the horizontal force is zero for the case of a pin/pin beam with
vertical loads, as would obviously be the case for a pin/roller.  We can then use formulas
we already know from this and previous sections for finding deflections and we would see
that the vertical deflections are also identical for pin/pin versus pin/roller.  Does this
seem reasonable?

A beam that is pin-pin is restrained against horizontal motion, whereas a beam that is
idealized as pin/roller or roller/roller is not restrained.  Intuitively, this makes a
difference.  Intuitively, if subjected only to vertical force, the beam that is pin/pin will still
have horizontal reactions whereas the beam that is roller/roller or pin/roller will not
have horizontal reactions, since it is free to move.  However, these horizontal reactions
are small and, intuitively, are small enough to be neglected.  In practice, the typical
beams analyzed in this manner (simple supports) are checked for vertical force and
vertical deflections, which intuitively would NOT be SIGNIFICANTLY affected by the
pin/pin restraints.  In practice, the typical beams are completely ignored when lateral
drifts are checked.  So, luckily, we don’t need to conclude that all beam-related formulas
up to this point are false and develop new formulas. The fact that pin/pin or pin/roller
makes no difference for vertical forces, horizontal forces, and vertical deflections of our
typical beams seems reasonable, because in reality the differences would in fact be very
small.
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Unlike typical beams, the supports of moment frames and braced frames and trusses
should always be modeled exactly how they are actually built.  As we will see in the
following sections, when we consider a system of beams or bars, such as a moment
frame, horizontal reactions will be developed from vertical forces. We will also consider
a pin/pin truss.  Unlike a beam, a truss that is pin/pin is different than a truss that is
pin/roller.  A truss will have different forces and deflections, depending on the support
configuration.

Method of consistent deformations – Redundant forces

0' 12111 

These could be combined into a single integral (so
that M is in terms if P, Q, 21 Xand,X ).  Then, it

would just be 1 (from all forces) = 0.

Specifically, 
L

0

1
1 dx

EI

)
dX

dM
(M

(if using

Castigliano’s Theorem)

Also,

0' 22212 
or

0XX' 2121111  (1)

0XX' 2221212  (2)

 = deflection due to external loads (with redundant supports removed).

11 = deflection at point 1 due to a unit force at point 1

12 = deflection at point 1 due to a unit force at point 2

This applies to couples and/or loads.
We can use Castigliano’s Theorem, the unit load method, or any other method.
There are two unknowns 21 X,X , and two equations (1), (2) 
Solve for the redundant supports.  Then, find the rest of the support reactions.
(clearly 1X and 2X as pictured will have negative values)
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e.g. use conjugate beam

(conjugate beam)
From equilibrium of the loaded conjugate beam,

2

2

A L

Pab
M  ;

2

2

B L

bPa
M 

e.g. use superposition

We know that
2

2

A L

Pab
M  for an arbitrary point

load (derived in the previous example).
For this uniform load, if P = wdx, a = x, and b = L-x,

then 



L

0
2

2

A L

)xL)(x(dxw
M = wL

12

1 2

When faced with fixed-end beams or propped-cantilevered beams, reactions can be
determined by this approach regardless of load distribution, as long as we know the
reactions for an arbitrary point load ( AM for a propped-cantilevered beam from an

arbitrary point load =
2L2

)bL(Pab 
)

e.g. use unit load method

We can approach this
problem by using a
system of equations such
as (1) and (2) on the
previous page.  We’ve
already found “ 1 ”,
“ 2 ”, and “ 3 ” from
e.g. 2 in the “virtual force
(unit load method)”
section
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General:  
cdbcab

dx
EI

Mm
dx

EI

Mm
dx

EI

Mm


:11 deflection in direction 1 due to 1

:12 deflection in direction 1 due to 2

:13 deflection in direction 1 due to 3

:21 deflection in direction 2 due to 1

:22 deflection in direction 2 due to 2

:23 deflection in direction 2 due to 3

:31 deflection in direction 3 due to 1

:32 deflection in direction 3 due to 2

:33 deflection in direction 3 due to 3

1a )( deflection at “a” in direction 1

 
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1a )( deflection at “a” in direction 2
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1a )( deflection at “a” in direction 3
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+      
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0

12

0

10

0

3
2

11 )right(EI
ft*kip1867]dx)10x(dx)10)(10(dx)x([

EI

1


  
12

0

10

0

3

12 )left(EI
ft*kip1320]dx)12)(10x(dx)x)(10(0[

EI

1


   
10

0

12

0

10

0

3

13 )left(EI
ft*kip220]dx)1)(10x(dx)1)(10(dx)1)(x([

EI

1


)down(EI
ft*kip1320

3

1221  

  
12

0

10

0

3
22

22 )up(EI
ft*kip2016]dx12dxx0[

EI

1


  
12

0

10

0

3

23 )up(EI
ft*kip192]dx)1)(12(dx)1)(x(0[

EI

1


)ccw(EI
ft*kip220

2

1331  

)cw(EI
ft*kip192

2

2332  

   
10

0

12

0

10

0

2

33 )cw(EI
ft*kip32]dxdxdx[

EI

1

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note:  (1.2 )
ft

kips
(12ft) = 14.4 kips ; From symmetry, kips2.7

2

4.14


note:  Making a table greatly simplified this problem.  Separating all of the deflections
and summing is not necessary, but was done for clarity.  The end result would be the
same.

Using the method of consistent deformations in analyzing a frame would become
intolerable if the problem involves as many redundant elements as a rigid frame usually
does.

e.g.

E = 30,000 2in
kips

1
)in(A

)ft(L
2
 for all members

note: 16j2414 
(redundant to the 2nd degree)

Two redundant elements; one in the
reaction component (choose “e”) and the
other in the bar (choose Cd).

The horizontal movement at support e
and the relative axial displacement
between cut ends of bar Cd are zero.

One way to think of it is:

212 and  cause joints C and d to move
closer to each other along the line Cd.
The cut ends overlap.

For beam Cd to be one piece, its
unknown internal force 2X , must shorten

the beam by 22 so that the cut ends no
longer overlap.  The end result is a
shorter beam Cd, but no displacement
between cuts.
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note:  Deformation must always be considered when the truss is statically indeterminate.
Using method of sections, for example, would not work because it would yield a singular
solution.
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Castigliano’s compatibility equation (method of least work) –
Redundant forces

As mentioned at the beginning of the previous section, another way of finding redundants
is through Castigiliano’s Theorem:

e.g.1

Since e is a symmetrical midpoint,

  0dx
EI

)
dM

dM
(M

or0
dM

dW e

e

(slope at e = 0
)
Our other condition will be

  0dx
EI

)
dH

dM
(M

or0
dH

dW e

e

“2” is in the numerator of the following expressions because we’re only using half of the
frame:
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  
6

0

10

0
ee

2

e
e

0]dx)1)(6.21xHM(dx)1)(
2

x2.1
M([

EI

2
0

dM

dW

0552.15H3M96. ee  (1)

0]dx)x)(6.21xHM([
EI

2
0

dH

dW 10

0
ee

e

 

08.64H20M3 ee  (2)

Solving (1) and (2) yields ft*kips4353.11M,kips525.1H ee 

From equilibrium, kips08.5M;kips53.1H AA  (skipped work)
This is exact to two decimals.  Calculations for this problem in the previous section were
rounded, resulting in the slight difference in solution of AM .

This example could just as easily of been solved by using the unit load method at the cut.
Method of least work is still too cumbersome for a highly redundant frame.

e.g. 2 – Same a previous example, but apply the method of least work at “a” and

take to be known.

M = cdbcab MMM 
=

)]xXX10(X12X[]X10xXX[]xXX[ 112312313 

  
10

0
1

12

0
23

1
131 dx)10)(X10xXX(dx)x

dX

dM
)(xXX([

EI

1


EI

ft*kip
X220X1320X1867]dx)x10)(xXX10X12X(

3

3211

10

0
123  

  
10

0

12

0
123

2
132 dx)x)(X10xXX(dx)0

dX

dM
)(xXX([

EI

1


EI

ft*kip
X192X2016X1320]dx)12)(xXX10X12X(

3

3211

10

0
123  

  
10

0

12

0
123

3
133 dx)1)(X10xXX(dx)1

dX

dM
)(xXX([

EI

1

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EI

ft*kip
X32X192X220]dx)1)(xXX10X12X(

2

3211

10

0
123  

note: a did not have to be worked out separately – the moments M = 0, M = ,
2

x2.1 2

and M = 86.4 could have been added to each respective integrand.  The end result would
be the same.

note:  regardless of what deflections you choose to separate, or whether you use the unit
load method or Castigliano’s Theorem, separating the moments in a table, before
integrating, is often a good idea.

e.g.3
reactions on the left in (1) and (2)
are found from equilibrium of the

whole beam after
4

wL
and

L

M2 1 are

known, respectively.

Our redundant unknown is a ccw
moment couple just to the left of the
pin, which decreases the relative

rotation (makes 
c less steep) and

an equal cw moment couple just to the right of the pin, which decreases the relative

rotation (makes 
c more steep).
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So, we call these moments 1M as shown in (2).  In other words, we defined an 1M that

causes some rotation (   cc  to cancel the effect of the pin).  In the real beam, this

rotation is zero.  So, 
1dM

dW
rotation from 0M 1  .

x = 0 :

1

2
1 M2

4

wL
)0(M

L

M2

4

wL3
)0(V 


 

:Lx0  

wx
L

M2

4

wL3
wdx

L

M2

4

wL3
)x(V 1

x

0

1  

L

)]Lx(M4)L5.Lx5.1x(Lw[5.
dxwx

L

M2

4

wL3
M2

4

wL
)x(M 1

22x

0

1
1

2 



 

(equivalent to finding the BMD for (1) and (2) separately and summing)

x = :L

0)L(M
L

M2

4

wL
)L(V 1 

 

 



L

0

1
2

1

0dx)
L

)Lx(2
)(

L

)]Lx(M4Lx5.1x(Lw[5.
(

EI

1

dM

dW

Lw
8

3

L

)
16

wL
(2

4

wL
R

16

wL
M

2

b

2

1 

note:  Axial deformation is neglected for beams and frames in the method of consistent
deformations, least work, and other methods to come.  But what effect does this have on
the accuracy of the calculations of redundant forces?
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Composite Structure

e.g. 1

W =  
AE2

LS

EI2

dLM 1
22

0
d

dW




dx
EI2

sinx
W

2/L

0

222








L

2/L

2

dx
EI2

)2/Lx(Psinx( 

11

1
222

EA2

L

AE2

Lcos 



2/L

0

22

dx
EI

sinx

d

dW 


dx
EI

)sinx)](2
Lx(Psinx[L

2/L







0
EA

L

AE

Lcos

11

1
2




SOLVE

)
AE

ELI

A

IP
cos

3

L
(sin

L)
48

5
(sinP

11

12
3

2

3









(axial deformation and bending)

note:  If ,Eand90 1  then we have a prop-cantilevered beam with
16

P5


Choose values:

E = 1E , P = 20, ,30 L = 10, 1L = 12, I = 4)3(.
64


, A = 2)3(. , 2

1 )1(.A 

 (skip work)
47.12 (with axial deformation)
50.12 (without inclusion of axial deformation)
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e.g. 2
Axial Deformation Only :
DC and FE deform axially;
No bending allowed in ADFB

21 EE 

m003.dm3.L

m004.dm4.L

22

11




compatibility method:

  0)b3(26.1)b2(TbT:M 21A (1)

12
12 2

bb2





))004(.
4

(E

)4(.T2

))003(.
4

(E

)3(.T

2

1

2

2


 (2

kN945.TkN4175.1T 12  (axial deformation only)
(different lengths and areas will result in different solutions)

Bending Only :

ADFB deforms in bending ; no axial deformation
allowed in DC or FE

Unit load method :

  kN89.1R0)b3(26.1)b2(R:M FFA

  kN63.R0R26.189.1:F AAy

x63.)x(M:b2x0  

:b3xb2   b78.3x26.1)x(M 
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  kN5.R0)b2(R)b(1:M FFA

  kN5.R0R2/11:F AAy

x5.)x(M:bx0  

6x5.)x(M:b2xb  

0)x(M:b3xb2 

  









b

0

3b3

b2

b2

b EI

b315.
dx

EI

)0)(b78.3x26.1(
dx

EI

)bx5)(.x63.(
dx

EI

)x5.)(x63.(


  






b

0

b2

b

322

EI

b1667.
0dx

EI

)bx5(.
dx

EI

)x5.(


0T1  0T
EI

b1667.

EI

b315.
1

33



kN835.2TkN890.1T 21  (from equilibrium or from same process on 2T )
(bending only)

To treat the structure as a composite member, we need the moment of inertia I for beam
ADFB, as well as “b” :

Take I = m3.b,m)006(.
64

44 


Choose 1T as the redundant:

Total elongation of member DC = 0
))004(.

4
(E

)4(.T2
)

EI

Tb16667.

EI

b315.
(

2

11
33




kN888.1T1 

The inclusion of axial deformation has no significant effect on the solution, for this
problem.

note:  Previous analysis of the statically indeterminate one bay frame (with the beam
loaded uniformly) resulted in each vertical support reaction being equal to exactly one-
half of the total load (obviously the exact answer) despite the neglecting of axial
deformation.  This is because this frame was symmetrical (there are no relative axial
displacements).
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Moment distribution method – Joint moments in a frame

Take the propped-cantilevered beam shown.  It
has no load.  We’d like to know the general
relationship between a and abM (end moment of

member ab at “a”) or baM (end moment of

member ab at “b”)

0
dx

d
EI

4

4




Initial conditions: 0)L(')0('0)L(0)0( a 

a
2)

L

x
1(x  (skipped work)

a2

2

)
L

x
64(

L

I
E)x(M

EI

M

dx

d






So, abaaab L

I
E2Mand

L

I
E4M 

OR

aabab SM  , where abbaab Ek4stiffnessmemberSS 

where
L

I
factorstiffnesskk baab 
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Lock the structure so that there are four fixed-end beams.  Find
the FEMs, including the total moment M at the center (ccw).
Create an opposite moment shown (cw moment M) to “unlock”
the beam.  Joint j now rotates through an angle  .  Now,
picture (e) is equivalent to picture (a) and we can proceed with
the moment distribution.

 jaja Sm Sum of the moments must equal

 jbjb Sm zero, so, ( jcjbja SSS 

 jcjc Sm M)S jd  , where M is the

 jdjd Sm “external” moment at joint j
(1)

(all  are equal due to continuity)

If the members have the same E, but not necessarily the same I

or L, then M)kkkk(E4 jdjcjbja 



kE4

M
(2)

 k includes all members that connect at rotating joint (can
vary depending on which end of beam)

From (1) and (2),

MDM
k

k

kE4

M

L

EI4

kE4

M
Sm ja

ja
jaja 



MDM
k

k
m jb

jb
jb 



MDM
k

k
m jc

jc
jc 



MDM
k

k
m jd

jd
jd 



These are called distributed moments (DMs).  D = distribution factor =
k

k

Assumes constant E – usually the case since beams made of different materials are rarely
connected together.

note:  D depends only on member dimensions.  The individual moments are just ratios of
each other that add up to M – i.e. the “external” moment, M, is distributed among the
connecting beams, according to their relative dimensions (stiffnesses).

djcjbjaj m,m,m,m - called the carry-over-moments, need to be found.
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baab MandM , which were found on the previous page, can be equated with a “carry-

over-factor” ; ababba MCM  ;
2

1
CC baab 

,So jaaj m
2

1
m  ; jbbj m

2

1
m  ; jccj m

2

1
m  ; jddj m

2

1
m 

These are called carry-over-moments (COMs).
)COM(m)DM(m)FEM(M jajajaja 

)COM(m)DM(m)FEM(M ajajajaj 

note:  It is not yet clear how to find end moments for a frame when there is more than one
joint that can rotate

note:  sign conventions will become clear in the following examples

e.g. 1

beam ba: 4.
)40

1
60

1(I
60

I




beam bc: 6.
)40

1
60

1(I
40

I




Clockwise moments = positive  (FEMs can be found in Appendix B)
300)FEM( ba  300)FEM( ab  100)FEM( bc  100)FEM( cb  (skipped work)

200))100(300(M b  (Total FEM at b)

Distributed moments: ft*kips80)200(4.mba  ; ft*kips120)200(6.mbc 

Carry-over-moments: ft*kips40m
2

1
m baab  ; ft*kips60m

2

1
m bccb 

(COM has same sign as DM)

ft*kips40M

ft*kips220M

ft*kips220M

ft*kips340M

cb

bc

ba

ab





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If there are multiple rotating joint, then the joints must be continually locked and
unlocked until the carry-over-moments are considered negligible (see the following
example)

note: For all cycles : At a fixed support, DM is zero.  At a joint across from a fixed
support, COM is zero.  For a span with no load, FEM is zero (this does not necessarily
mean that M = 0 for that span).

e.g. 2

Beam ba = cdBeam545.

12
I

10
I

10
I




Beam bc = cbBeam4545.

12
I

10
I

12
I




ft*kips4.14
12

)12(2.1
)FEM(

2

bc 



ft*kips4.14)FEM( cb 
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e.g. 3
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OR
(release joints “simultaneously”)

note:  So far, joint translations are ignored in the moment distribution method.  This can
have an effect on the accuracy of joint moments.  Previous analysis of the one bay frame
(with beam uniformly loaded) resulted in the exact solution because it is symmetrical
(and hence there are no relative displacements in the columns), and there is no side sway,
from inspection.  Lateral loading and/or non-symmetrical gravity loading can cause joint
translations.
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Modified stiffness method – Shortcut for certain special cases

Special cases :

aj = the most basic member with a single DM at
ja and COM at aj

bj = supported by a pin

cj = symmetrical

dj = antisymmetrical

Basic: jaja k'k  , where 'k = “modified stiffness factor”

Pinned support :  'Ek4Ek3M jbjbjb , where jbjb k
4

3
'k 

Symmetrical :  'Ek4Ek2M jcjcjc , where jcjc k
2

1
'k 
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Antisymmetrical :  'Ek4Ek6M jdjdjd , where jdjd k
2

3
'k 

M
'k

'k
M ja

ja

 M

'k

'k
M jb

jb

 M

'k

'k
M jc

jc

 M

'k

'k
M jd

jd



kips225)40)(60()
40

30
)(

40

10
(

)40)(60)(
40

30
()

40

10
(FEMFEM

2

2
cbbc





cbbcba k
20

I

40

I2
k

15

I

30

I2
k 

20

I
k

20

I
k

15

I

30

I2
k cfbecd 

modified stiffness:

'kI05.k
4

3
'k cdbaba  (pinned/roller support)

'kI075.k
2

3
'k cbbcbc  (antisymmetrical)

'kI05.k'k cfbebe 

note:  only one cycle needed for this problem with modified stiffness approach

note:  since the frame is symmetrical, we don’t really need to tabularize all of the
moments, but rather just half of the frame

This problem is solved without modified stiffness in Hsieh (1995).
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Treatment of joint translations

If there are joint translations, then

jajajaja FEMCOMDMM 
+ additional joint translation moment

relative displacement, shown, results in negative
moment, shown

LR 

e.g. 1

'k
6

I
'k)

4

3
(

6

I)3
8(

babc 

3L

EI9 
from   0M b for member ab

From   0Fx for the whole frame, 9
L

EI9
3



EI

L3

 

 m*kN24Mm*kN24Mm*kN30M bcbaab 

OR

Choose arbitrary FEM = -90 kN*m
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22.5 from   0M b for member ab

From   0Fx for the whole frame, 22.5  9

Need correction factor of 5.22
9 for all forces and moments

 m*kN24Mm*kN24Mm*kN30M bcbaab 

note:  method 2 does not even use the formula EkR6M  .  Since the solutions for
method 1 and 2 match correctly, we know our derivation for EkR6M  is correct.
Method 2 is more manageable, but how can we use method 2 if the loads are not only
located at the joints?
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e.g. 2
(a)

From   0Fx for the whole frame,

the pin has a reaction of 2.5kN acting
left.  This must be counter-acted as
shown in (b) since the beam does not
have a pin.

(from  bM for

member ab)

(b)

From   0M b for member ab and   0Fx for the

whole frame, the correction factor is 5.22
5.2 , where

22.5 is from the previous example.
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So, moments for b:

(a) + (b ) m*kN67.1M67.1M33.10M bcbaab 

note:  moment distribution can be used to find moments that include the effect of sway for
asymmetrical vertical loadings, and for multi-story frames, but it quickly becomes
cumbersome to do by hand.

Slope-deflection method – Joint moments in a frame

Consider member ab, which is
isolated from a loaded rigid frame
(not shown).

Sign convention:  all values shown
are positive.

ab2
ba

ab )FEM(
L

EI6

L

EI2

L

EI4
M 










ba2
ba

ba )FEM(
L

EI6

L

EI4

L

EI2
M 










Recall these values from the derivations in the sections on “Moment distribution method”
and “Treatment of joint translations”.

Manipulating a bit;

babaabbaba

ababbaabab

FEM)R32(Ek2M

FEM)R32(Ek2M




LL

ntdisplacemelativeRe
R


 ( baab RR  )

If joint “a” is a rigid support, then 0a  (i.e. (DM) 0ab )
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e.g.1

Assume end moments are known.  This is sufficient to find all forces at the joints, from
equilibrium.  The result (all forces in terms of end moments) is shown.  But now there is
only one equilibrium equation left (proof in e.g. 3) and we don’t yet know the moments.

25)R3)(
20

I
(E2FEM)R3(Ek2M babbabab  

25)R32)(
20

I
(E2M bba  

For 0,MandM abaab  since “a” is a rigid support

)2)(
10

I
(E2M cbbc  

)2)(
10

I
(E2M bccb  

For ,MandM bccb R = 0 and FEM = 0 (no relative displacement since axial

deformation in ab and cd is neglected) (beam bc is also unloaded)

)R32)(
20

I
(E2M ccd  

)R3)(
20

I
(E2M cdc  

For 0,MandM ddccd  and FEM = 0 (rigid support at “d”)(beam cd is unloaded)

All R are equal for this frame (axial deformation in bc is neglected).

Including )
20

or(R,, cb


 , there are 9 unknowns.

Equations:

6 above +( )MM bcba  +( cdcb MM  )+[ ]0)
20

MM
()5

20

MM
(10 dccdbaab 







=9 equations
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The last term in the above expression comes from   0Fx for the whole structure,

which is the extra equation of equilibrium mentioned previously.

Solving, yields:

EI

95.92
R

EI

02.12

EI

48.50
bc 

 

80.22M80.17M80.17M30.5M30.5M10.54M dccdcbbcbaab 
(kip * ft) (positive = cw)

All joint forces have already been found in terms of the moments, so they can be solved
for numerically, and bending moment diagrams can be drawn.

e.g. 2

)(
10

I
E2M bab 

)2(
10

I
E2M bba 

For member ab, 0a  , R = 0, FEM = 0

4.14)2(
12

I
E2M cbbc  

4.14)2(
12

I
E2M bccb  

For member bc, R = 0

)2(
10

I
E2M ccd 

)(
10

I
E2M cdc 

For member cd, 0d  , R = 0, FEM = 0

Additional equations: cbcdbcba MMMM 

Solve 
EI

4.25

EI

4.25
cb


 

08.5M16.10M16.10M16.10M16.10M08.5M dccdcbbcbaab 
(kip * ft)

This is the same solution as the other methods, as expected.

Joint translations can often be related to each other through inspection.  Sometimes joint
translations relationships are required in order to solve for the joint moments.
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From the Law of Sines:

90sin)90sin(sin
321 









From inspection, we can see that member bc
will deform as shown, with cb  , because

if an equal and opposite force is applied at c,
then member bc (and the frame as a whole)
must deform back to its original position
(neglecting axial deformation in bc).
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e.g. 3

cb

2

bc FEMft*kip750.6
12

)9)(1(
)FEM( 




dc

2

cd FEMft*kip333.21
12

)16)(1(
)FEM( 




(skipped work)

)R3(
15

I
E2M babab  

(1)

)R32(
15

I
E2M babba  

(2)

75.6)R32(
129

I
E2M cbcb22bc 


 

(3)

75.6)R32(
129

I
E2M cbbc22cb 


  (4)

333.21)R32(
1216

I
E2M dcdc22cd 


  (5)

333.21)R32(
1216

I
E2M dccd22dc 


  (6)

)R32(
15

I
E2M dedde   (7) )R3(

15

I
E2M deded   (8)

bcba MM  (9) cdcb MM  (10) dedc MM  (11)

(15 unknowns; we need 4 more equations)

Additional equilibrium equations will introduce additional unknowns.  In this case, as we
will see below, introducing the additional equations of equilibrium (for each of the four
segments of the structure) will only help to eliminate two unknowns.
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10 unknowns here (moments treated as known)
12 equations.
Recall that we needed 14 equations, in this case, to solve for everything, since we needed
to gain 4 additional from before.

While we’re at it though, we can solve for joint forces in terms of moments (shown below)
for later.
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note:  If we want to simply know the static indeterminacy of the frame, then we can
concentrate solely on the picture above.  We can consider the 18 unknowns (note that the
forces are already assumed equal and opposite, as drawn, but the moments are not).  The
static indeterminacy will be the same, regardless of our method of approach.

12 equations + ( )MM bcba  +( )MM cdcb  +( )MM dedc  = 15 equations

18 unknowns – 15 equations = 3  static indeterminacy of the frame

(3b + r = 18, 3j = 15; 18 unknowns > 15 equations  indeterminate to 3rd degree)

Returning to the slope-deflection equations, there are 15 unknowns and 13 equations (11
from before and the 2 additional from above).  The additional two equations have not
been explicitly written here, but they can come from )13(0F),12(0M y  for the

frame as a whole, in terms of the joint moments shown above.

We still need two more equations, but all equilibrium equations have now been used (if
you try to use more equilibrium equations, solving will return a singular solution)

Our only option is to create two more equations by using deflection relationships.
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Law of sines:

)90sin()90sin()sin( 1

4

2

3

21

21



















  13.53)
9

12
(tan 1

1

  87.36)
16

12
(tan 1

2



6.8.1
4321 




)(8. 213   (14) )(6. 214   (15)

15
R 1

ba


 (16)

22

3
cb

129
R





(17)

22

4
dc

1216
R







(18)

15
R 2

de


 (19)

Instead of 2 more equations, we obtained 6 more equations and 4 more unknowns
( 4321 ,,,  ).  But this is fine – 19 equations, 19 unknowns

SOLVE


EI

)8.82(755.

EI

8.82

EI

)8.82(035.
dcb


  radians

EI

)8.82(414.
R

EI

)8.82(53.
R

EI

)8.82(95.
R

EI

)8.82(77.
R dedccbba 





 ft

rad

EI

)8.82(7.10

EI

)8.82(25.14

EI

)8.82(2.6

EI

)8.82(6.11
4321   ft

4.30M2.2M2.2M4.26M4.26M0.26M dccdcbbcbaab 
0.22M4.30M edde  kips * ft
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e.g. 4
(a)

3)00(
6

)I(E2
M bab  

3)002(
6

)I(E2
M bba  

6)002(
6

)I3
8(E2

M bbc  

6)00(
6

)I3
8(E2

M bcb  

bcba MM 

SOLVE 

091.7M818.3M

818.3M591.2M

cbbc

baab




(b)

)0(
6

)I(E2
M bab 

)2(
6

)I(E2
M bba 

)2(
6

)I3
8(E2

M cbbc  

)2(
6

)I3
8(E2

M bccb  

091.7M cb 

bcba MM 
SOLVE  091.7M182.1M182.1M591.M cbbcbaab 

(a) + (b)  0M5M5M2M cbbcbaab  kN * m

OR

3)00(
6

)I(E2
M bab  
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3)002(
6

)I(E2
M bba  

6)02(
6

)I3
8(E2

M cbbc  

6)02(
6

)I3
8(E2

M bccb  

bcba MM 
0M cb 

SOLVE  0M5M5M2M cbbcbaab  kN * m

( )
EI

3
,

EI

875.4
bc 


  radians

The methods presented in this chapter on Classical Structural Analysis put into practice
some of the ideas illustrated in statics and mechanics of materials, namely, that the
distribution of forces in a frame is influenced by not only overall geometry but also by
relative member stiffnesses.  Courses on Matrix Structural Analysis (or FEA) present a
more elegant method for solving for forces in statically indeterminate systems, utilizing
linear and rotational deformation compatibility at every joint, for example, if beam and
column “elements” are used. FEA is less intuitive, but is the method that is used by
structural analysis computer software due to its versatility and computational efficiency
when it comes to transforming analysis methods into computer algorithms.  Just as
courses on Numerical Methods should typically be taken after Differential Equations,
Matrix Structural Analysis should be taken after Classical Structural Analysis.  The
methods for solving differential equations of motion for a simple system or for solving
for the member forces in a simple frame, by hand, are entirely different, than the methods
or algorithms that would be used by software to solve more complex dynamic or static
problems.  Courses on Matrix Structural Analysis and the related field of Finite Element
Analysis are typically taken at the graduate level.
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