Table of Contents

CLASSICAL STRUCTURAL ANALYSIS 1
Conjugate beam method 2
External work and internal work 3
Method of virtual force (unit load method) 5
Castigliano's second theorem 11
Method of consistent deformations - Redundant forces 16
Castigliano's compatibility equation (method of least work) - Redundant forces 22
Composite Structure 26
Moment distribution method - Joint moments in a frame 29
Modified stiffness method - Shortcut for certain special cases 35
Treatment of joint translations 37
Slope-deflection method - Joint moments in a frame 40
Appendix 50

CLASSICAL STRUCTURAL ANALYSIS

Classical structural analysis is concerned with methods for finding axial forces, shear forces, and internal moments, within structures, when the applied external forces are known. Whereas "statics" deals with the equations of static equilibrium, which can be used to find internal forces (axial, shear, and moments) for statically determinate structures, classical structural analysis can handle more complicated structures that are statically indeterminate. The equations of static equilibrium will still be important, but now we also need to consider the properties of the materials that the structure is composed of.

The Young's Modulus of the material will be important, for example. We will also need to know something about the geometry of the cross-sections of members, such as the cross-sectional area and moment of inertia. Thus, "statics" as well as "mechanics of materials" are topics that are prerequisites for this topic: "classical structural analysis." There are other kinds of structural analysis, such as "finite element analysis," but such methods use algorithms that are better implemented using a computer. Classical structural analysis, on the other hand, has been around for a long time and is meant to be performed by hand. In other words, the "classical" methods of structural analysis, herein, are analytical methods rather than computational methods. We are still considering only elastic behavior.

Conjugate beam method

$$
\begin{aligned}
& v^{\prime}=\int \frac{M}{E I} d x=\text { slope } \quad\left(\theta=\int \frac{M}{E I} d x\right) \\
& v=\int v^{\prime} d x=\text { deflection } \quad\left(\delta=\iint \frac{M}{E I} d x d x\right)
\end{aligned}
$$

We create a "conjugate beam" and choose to load with $\bar{w}=\frac{M}{E I}$ where M is the moment along the actual beam (in terms of x).
The shear $\overline{\mathrm{V}}$ in the conjugate beam $\overline{\mathrm{V}}=-\int \overline{\mathrm{w}} \mathrm{dx}=-\int \frac{\mathrm{M}}{\text { EI }} d x=\theta$ in the actual beam.
The moment \bar{M} in the conjugate beam $\bar{M}=\int \overline{\mathrm{V}} \mathrm{dx}=-\iint \frac{\mathrm{M}}{\mathrm{EI}} \mathrm{dxdx}=\delta$ in the actual beam.
(positive M means load $\overline{\mathrm{w}}$ acts downward)
(signs of δ and θ are usually obvious from inspection)

1. The slope at a given section of the actual beam equals the shear in the corresponding section of the conjugate beam.
2. The deflection at a given section of the actual beam equals the bending moment in the corresponding section of the conjugate beam. fixed end \leftrightarrow free end simple end \leftrightarrow simple end (roller \leftrightarrow roller) internal connection \leftrightarrow external interior support
i.e. if the actual beam has a fixed support, then it cannot rotate or deflect, so the conjugate beam is not allowed to have shear or moment \therefore the conjugate beam needs a free end $(\theta=0 \leftrightarrow \overline{\mathrm{~V}}=0 \quad \delta=0 \leftrightarrow \overline{\mathrm{M}}=0)$
actual beam

The conjugate beam method is very fast for finding δ and θ at endpoints or supports, because δ and θ for the endpoints of the actual beam are just the support reactions of the conjugate beam.
note: It's okay if the conjugate beam appears unstable.

External work and internal work

Consider a load gradually applied to a structure. Assume a linear relationship exists between the load and the deflection. This is the same assumption used in Hooke's Law in the previous chapter, and shown by experiment to be true within the "linear elastic" range for most materials.

Then, $\mathrm{W}=\int_{0}^{\Delta} \mathrm{Fds}=\frac{1}{2} \mathrm{P} \Delta \quad \Delta=$ deflection (results in a triangular P versus Δ graph)
note: If another force besides P occurs at the location of P , further $\mathrm{d} \Delta$ will occur without further increasing the magnitude of P . P remains constant, so the additional work done by P is $\mathrm{Pd} \Delta$ (rectangular P versus Δ graph). This is important in the derivation of the unit load method later on.

Also, $\mathrm{W}=\frac{1}{2} \mathrm{C} \theta$ where $\mathrm{C}=$ external couple moment
This external work is converted to internal energy (strain energy)
$\mathrm{dW}=\frac{1}{2} \mathrm{Md} \theta$
Using $\frac{d \theta}{d s}=\frac{M}{E I} \quad$ or $\quad d \theta=\frac{M d s}{E I} \Rightarrow d W=\frac{M^{2} d s}{2 E I}$
So, the total strain energy in the beam of length L, is
$\mathrm{W}=\int_{0}^{\mathrm{L}} \frac{\mathrm{M}^{2} \mathrm{dx}}{2 \mathrm{EI}}$
For a truss (axial force S only),
Strain energy $W=\frac{1}{2} S(d L)=\frac{1}{2} S\left(\frac{S L}{A E}\right)=\frac{S^{2} L}{2 A E}$ per member.
So, $W=\sum \frac{S^{2} L}{2 A E}$ for the entire truss.

Equating External and Internal Work

This concept can be used to find δ or θ at a point.
e.g.

EI constant

$$
\begin{aligned}
& W_{\text {external }}=\frac{1}{2} P \Delta_{b} \\
& W_{\text {internal }}=\int_{0}^{L} \frac{M^{2} d x}{2 E I}=\int_{0}^{L} \frac{(-P x)^{2} d x}{2 E I}=\frac{P^{2} L^{3}}{6 E I} \\
& \text { Equating } \Rightarrow \Delta_{b}=\frac{\boldsymbol{P L}}{\mathbf{3 E I}}
\end{aligned}
$$

This method is quite limited in application since it is applicable only to deflection at a point of concentrated force. Also, if more than one force is applied to the system, a solution becomes impossible since there will be many deformations.

Method of virtual force (unit load method)

(i.e. internal work contributes to the shortening or elongating of internal fibers, analagous to a beam with fibers shortened above the neutral axis and elongated below the neutral axis)

External work must equal the internal strain energy.
$\frac{1}{2} \mathrm{P}_{1} \Delta_{1}+\frac{1}{2} \mathrm{P}_{2} \Delta_{2}=\frac{1}{2} \sum \mathrm{~S} * \mathrm{dL}$
$\frac{1}{2}(1) \delta=\frac{1}{2} \sum \mathrm{u}^{*} \mathrm{dL}_{1}$
Compared with the previous section, this is a more useful derivation of internal strain, which applies to multiple loads, none of which are required to be at the location in which we want to find the deflection.

Now imagine that the actual loads P_{1} and P_{2} are gradually applied to case "b".
Equating external work and internal strain energy yields ;

$$
\frac{1}{2}(1) \delta+\frac{1}{2} \mathrm{P}_{1} \Delta_{1}+\frac{1}{2} \mathrm{P}_{2} \Delta_{2}+1 * \Delta=\frac{1}{2} \sum \mathrm{u} * \mathrm{dL}_{1}+\frac{1}{2} \sum \mathrm{~S} * \mathrm{dL}+\sum \mathrm{u} * \mathrm{dL}
$$

$1^{*} \Delta$ and $\sum \mathrm{u}^{*} \mathrm{dL}$ are the extra "rectangular" work values as described in the previous section.

The strain energy and work done must be the same whether the loads are applied together or separately, from conservation of energy.
$1 * \Delta$ must cancel with $\sum \mathrm{u} * \mathrm{dL}$
i.e. $1^{*} \Delta=\sum \mathrm{u} * \mathrm{dL}$ or $1^{*} \theta=\sum \mathrm{u} * \mathrm{dL}$ where " 1 " in the second expression corresponds to an external unit couple.
note: " 1 " and " u " are virtual values and " Δ ", " dL ", and " θ " are actual values.

We need to find dL and u in terms of actual, measurable, quantities.
$\frac{\mathrm{My}}{\mathrm{I}}=$ stress at y
(stress) $=($ strain $) \mathrm{E}=\frac{\mathrm{dL}}{\mathrm{dx}}(\mathrm{E})$ where $\mathrm{dx}=$ length of fiber
$\Rightarrow \mathrm{dL}=\frac{(\text { stress })(\mathrm{dx})}{\mathrm{E}}=\frac{\text { Mydx }}{\mathrm{EI}}$ and $\mathrm{u}=$ force $=($ stress $)($ area $)=\frac{\mathrm{my}}{\mathrm{I}} \mathrm{dA}$
note: the upper case " M " corresponds to the moment from the "actual" values (moment resulting from P_{1} and P_{2} in the picture above), while the lower case " m " corresponds to the moment from the "virtual" unit force.

$$
1^{*} \Delta=\sum\left(\frac{m y}{I} d A\right)\left(\frac{M y}{E I} d x\right)=\int_{0}^{L} \frac{M m}{E I^{2}} d x \int_{A} y^{2} d A \quad B u t, \int_{A} y^{2} d A=I
$$

So,
$1 * \Delta=\int_{0}^{\mathrm{L}} \frac{\mathbf{M m}}{\mathrm{EI}} \mathbf{d x}$
where $\mathrm{m}=$ bending moment from unit load and $\mathrm{M}=$ bending moment from actual loads
Also,
$\mathbf{1 *} \theta=\int_{0}^{\mathrm{L}} \frac{\mathbf{M m}}{\mathbf{E I}} \mathbf{d x}$
$\mathrm{m}=$ bending moment from unit couple and $\mathrm{M}=$ bending moment from actual loads
Now is a good time to recap some of the minor assumptions that may not have been explicitly stated so far:

Small angle approximations. These were used in the derivation bending stress formula, stress $=\frac{\text { My }}{\mathrm{I}}$, which has been used in this section. Small angle approximations are valid for most structural engineering applications.
Neglecting of axial deformations. Nowhere in this section did we include axial stress and strain of the beam, only axial stress and strain of the "internal fibers." This will be shown in a later section to be a valid assumption.
Conservative forces. Consider a beam loaded by gravity. The beam will deform, and the forces will thus hit the beam at an angle. This curvature is ignored in our force analysis, since the difference in solutions is negligible, as long as the small angle approximation is valid. This assumption has been used in previous chapters, and will continue to be used in all later chapters as well.
Engineering strain, rather than true strain. This assumption was stated in the section on "Hooke's Law" in the previous chapter. This assumption was used in the current section since the strain of the "internal fibers" was taken to be $\frac{d L}{d x}$ rather than $\frac{d L}{(d x-d L)}$.
Engineering strain will continue to be used in later chapters, since the difference in solutions is almost always negligible.
e.g. 1

(1)

(2)

(3)

member	origin	M	m_{1}	m_{2}	m_{3}
BD	B	Fh - Fx	$\mathrm{h}-\mathrm{x}$	0	1
AB	A	$\frac{-\mathrm{Fh}}{\mathrm{~L}} \mathrm{x}$	$\frac{-\mathrm{h}}{\mathrm{~L}} \mathrm{x}$	$\frac{1}{2} \mathrm{x}$	$-\frac{\mathrm{x}}{\mathrm{L}}$
BC	C	$\frac{\mathrm{Fh}}{\mathrm{L}} \mathrm{x}$	$\frac{\mathrm{h}}{\mathrm{~L}} \mathrm{x}$	$\frac{1}{2} \mathrm{x}$	$\frac{\mathrm{x}}{\mathrm{L}}$

deformation to left $=\int_{0}^{h} \frac{(F h-F x)(h-x)}{E I} d x+\int_{0}^{L / 2\left(\frac{-F h}{L}\right) x\left(\frac{-h x}{L}\right)} \underset{E I}{E I} d x+\int_{0}^{L / 2\left(\frac{F h x}{L}\right)\left(\frac{h x}{L}\right)} \underset{E I}{E I} d x$ $=\frac{\boldsymbol{1}}{\boldsymbol{E I}} \boldsymbol{F}\left(.333 h^{3}+.08333 \boldsymbol{h}^{2} \boldsymbol{L}\right)$ (units of length)
deformation upwards $=0+\int_{0}^{L / 2\left(\frac{-F h}{L}\right) x\left(\frac{1}{2} x\right)} \underset{E I}{ } d x+\int_{0}^{L / 2\left(\frac{F h x}{L}\right)\left(\frac{1}{2} x\right)} \frac{E I}{} d x=0$
rotation $\left.c c w=\int_{0}^{h} \frac{(F h-F x)(1)}{E I} d x+\int_{0}^{L / 2} \frac{-F h x}{L}\right)\left(\frac{-x}{L}\right), ~ d x+\int_{0}^{L / 2\left(\frac{F h x}{L}\right)\left(\frac{x}{L}\right)} \frac{E I}{E I} d x$ $=\frac{\boldsymbol{1}}{\boldsymbol{E I}} \boldsymbol{F}\left(.5 \boldsymbol{h}^{2}+.08333 \boldsymbol{h} \boldsymbol{L}\right)$ (radians)
note: signs can be tricky, which is one of the reasons why this method should be limited to beams and very simple frames.
note: It doesn't matter where we take our "origins" as long as we're consistent.
note: This problem could have been solved using $\frac{d^{2} v}{d x^{2}}=\frac{M}{E I}$ with $\theta_{B C}=\theta_{B A}$ as a continuity condition.
e.g. 2
e.g. 2
1.2 kips/ft

note: In this problem, as a whole, moments that deform the structure clockwise, are treated as positive. Those that deform ccw are negative. This determines the sign convention for M and m values. This is not to be confused with the sign convention for the solutions. Positive solutions \Rightarrow deformation occurs in the directions assumed on the unit force diagrams.

Instead of "dL" being a non-measurable quantity associated with internal "fibers", it can be the actual change in length of a truss member.
$1 * \Delta=\sum \mathrm{u} * \mathrm{dL} \quad \mathrm{dL}=\frac{\mathrm{SL}}{\mathrm{AE}} \mathrm{S}=$ internal force in a given member due to actual loads $\Delta=\sum_{1}^{\mathrm{m}} \frac{\mathbf{S u L}}{\mathbf{A E}}$ (truss)
$\mathrm{u}=$ internal force in a given member due to a fictitious unit load at the point and in the direction where the deflection is sought
$\mathrm{L}=$ length of member
$\mathrm{A}=$ cross-sectional area of member
$\mathrm{E}=$ modulus of elasticity of member
$\mathrm{m}=$ total number of members
e.g.

Not all L or all A are the same, but for simplification the ratio L / A is always the same in this example.

forces from actual loading (kips)

force from virtual unit loading
(kips)
$\Delta=\sum \frac{S u L}{A E}=\sum \frac{S u}{E}(1)$

member	S	1	Su
ab	36	9/16	20.25
bc	36	9/16	20.25
cd	12	3/16	2.25
de	12	3/16	2.25
BC	-24	-3/8	9
CD	-24	-3/8	9
aB	-60	-15/16	56.25
Bb	64	1	64
Bc	-20	-5/16	6.25
Cc	0	0	0
cD	20	5/16	6.25

Dd 000
De $\quad-20 \quad-5 / 16 \underset{202.0}{ }$
E is constant, so

$$
\Delta=\frac{202}{30,000}=.00673 \mathrm{ft}(\text { down })
$$

note: Finding the rotation of, for instance, member bc is equivalent to finding the relative displacement between ends b and c divided by the length $b c$.

Castigliano's second theorem

"the first partial derivative of the total strain energy of the structure with respect to one of the applied actions gives the displacement along that action"
$\Delta_{\mathrm{P}}=$ corresponding displacement (deflection or rotation) along P , where $\mathrm{P}=$ particular force or couple

$$
\Delta_{\mathrm{P}}=\frac{\mathrm{dW}}{\mathrm{dP}}
$$

For a loaded beam, total strain energy $\mathrm{W}=\int_{0}^{\mathrm{L}} \frac{\mathrm{M}^{2} \mathrm{dx}}{2 \mathrm{EI}}$ (derived in the section titled "External work and internal work")

For a loaded truss, total strain energy $\mathrm{W}=\sum \frac{\mathrm{S}^{2} \mathrm{~L}}{2 \mathrm{AE}}$
Note: $\mathrm{M}=\mathrm{M}_{1}+\mathrm{M}_{2}=\mathrm{m}_{1} \mathrm{P}_{1}+\mathrm{m}_{2} \mathrm{P}_{2}$, where $\mathrm{M}=$ bending moment at any section $\mathrm{M}_{1}=$ moment at any section due to load P_{1} $\mathrm{m}_{1}=$ bending moment at any section due to a unit load in place of P_{1}

The fact that M_{1} can be represented by the product of m_{1} and P_{1} (and the same for M_{2}, m_{2}, and P_{2}) and the fact that M can be represented by the sum of M_{1} and M_{2}, are both important principles made possible by the principle of superposition.

Using the Chain Rule for derivatives (skipped work) ;
Castigliano's Theorem for beams: Castigliano's Theorem for trusses :
$\Delta_{1}=\int_{0}^{L} \frac{M\left(\frac{d M}{d P_{1}}\right)}{E I} d x$
$\Delta_{1}=\sum \frac{\mathrm{S}\left(\frac{\mathrm{dS}}{\mathrm{dP}}\right) \mathrm{L}}{\mathrm{AE}}$

We can easily show that Castigliano's Theorem and the unit load method are really one in the same:
$\Delta_{1}=\frac{\mathrm{dW}}{\mathrm{dP}_{1}}=\frac{\mathrm{d}}{\mathrm{dP}_{1}} \int_{0}^{\mathrm{L}} \frac{\left(\mathrm{m}_{1} \mathrm{P}_{1}+\mathrm{m}_{2} \mathrm{P}_{2}\right)^{2}}{2 E I} \mathrm{dx}=\int_{0}^{\mathrm{L}} \frac{2\left(\mathrm{~m}_{1} \mathrm{P}_{1}+\mathrm{m}_{2} \mathrm{P}_{2}\right)\left(\mathrm{m}_{1}+0\right)}{2 E I} \mathrm{dx}=\int_{0}^{\mathrm{L}} \frac{\mathrm{Mm}_{1}}{E I} \mathrm{dx}$
Similarly, $\Delta_{2}=\int_{0}^{\mathrm{L}} \frac{\mathrm{Mm}_{2}}{E I} \mathrm{dx}$, as expected.
note: Theorem applies for θ calculations as well.
e.g. 1

e.g. 2

Castigliano's Theorem clearly works with multiple loads and can also work at points where a load is not present, by placing an imaginary load P_{1} at the point of interest and setting up the equation for Δ_{l} in terms of P_{1}. Then, set $P_{1}=0$ either before or after integrating/summing.

we're using $M=-\frac{w x^{3}}{6 L}$ since $Q_{1}=Q_{2}=0$
$\theta_{a}=\int_{0}^{L} \frac{\left(-\frac{w x^{3}}{6 L}\right)(-1)}{E I} d x=\frac{w L^{3}}{24 E I}=.003 \mathrm{rad}(c \boldsymbol{c w})$
e.g. 3 (same truss as the truss example in previous section)

$\underline{S(d S / d Q) L}$					
member	S	$\underline{\mathrm{dS} / \mathrm{dQ}}$	A		
ab	$36+3 / 4 \mathrm{Q}$	3/4		(setting $\mathrm{Q}=0$)	
bc	$36+3 / 4 \mathrm{Q}$	3/4	27		$\begin{aligned} & \Delta=\sum \frac{S(d S / d Q) L}{A E}=\frac{36}{30000} \\ & =.0012 \mathrm{ft}(\text { right }) \end{aligned}$
cd	$12+1 / 4 \mathrm{Q}$	1/4	3		
de	$12+1 / 4 \mathrm{Q}$	1/4	3		
BC	$-24+1 / 2 \mathrm{Q}$	1/2	-12		
CD	$-24+1 / 2 \mathrm{Q}$	1/2	-12		
aB	$-60+5 / 12 \mathrm{Q}$	5/12	-25		Since the top chord is in compression, one might expect to see movement at joint D to the left.
Bb	64	0	0		
Bc	$-20-5 / 12 \mathrm{Q}$	-5/12	8.333		
Cc	0	0	0		The fact that joint D moves to the right is entirely due to the fact that our left pin is immovable and our right roller slides to the right. This is, in fact, exactly how bridges are constructed. Bridge structures are exposed to the elements, so the bridge sits on a roller to
cD	$20+5 / 12 \mathrm{Q}$	5/12	8.333		
Dd	0	0	0		
De	$-20-5 / 12 \mathrm{Q}$	-5/12	8.333		
		\sum	36		

allow for expanding/contracting due to temperature fluctuations. (See the diagrams below) So, joint D would move to the right, as we've found.

For beams in buildings, we should remember that the typical left pin/right roller is not the reality. Typical beams in buildings do not actually sit on rollers, but are pin/pin. The left pin/right roller idealization for typical beams yields exactly the same results as a pin/pin, however, because of all of our beam assumptions. These assumptions include assuming the supports are at the neutral axis (a perfectly valid assumption for typical beams) which PREVENTS any horizontal reaction from creating a moment due to eccentricity, the idea of conservative force which PREVENTS any horizontal reaction from creating a moment due to the beam's curvature, and the neglecting of axial deformation. All of these assumptions result in pin/pin and pin/roller yielding identical results. I.e. we can use the methods in the following sections for finding redundant forces and we would see that the horizontal force is zero for the case of a pin/pin beam with vertical loads, as would obviously be the case for a pin/roller. We can then use formulas we already know from this and previous sections for finding deflections and we would see that the vertical deflections are also identical for pin/pin versus pin/roller. Does this seem reasonable?

A beam that is pin-pin is restrained against horizontal motion, whereas a beam that is idealized as pin/roller or roller/roller is not restrained. Intuitively, this makes a difference. Intuitively, if subjected only to vertical force, the beam that is pin/pin will still have horizontal reactions whereas the beam that is roller/roller or pin/roller will not have horizontal reactions, since it is free to move. However, these horizontal reactions are small and, intuitively, are small enough to be neglected. In practice, the typical beams analyzed in this manner (simple supports) are checked for vertical force and vertical deflections, which intuitively would NOT be SIGNIFICANTLY affected by the pin/pin restraints. In practice, the typical beams are completely ignored when lateral drifts are checked. So, luckily, we don't need to conclude that all beam-related formulas up to this point are false and develop new formulas. The fact that pin/pin or pin/roller makes no difference for vertical forces, horizontal forces, and vertical deflections of our typical beams seems reasonable, because in reality the differences would in fact be very small.

Unlike typical beams, the supports of moment frames and braced frames and trusses should always be modeled exactly how they are actually built. As we will see in the following sections, when we consider a system of beams or bars, such as a moment frame, horizontal reactions will be developed from vertical forces. We will also consider a pin/pin truss. Unlike a beam, a truss that is pin/pin is different than a truss that is pin/roller. A truss will have different forces and deflections, depending on the support configuration.

Method of consistent deformations - Redundant forces

$\Delta_{1}^{\prime}+\Delta_{11}+\Delta_{12}=0$

These could be combined into a single integral (so that M is in terms if $\mathrm{P}, \mathrm{Q}, \mathrm{X}_{1}$, and X_{2}). Then, it would just be $\Delta_{1}($ from all forces $)=0$.

Specifically, $\Delta_{1}=\int_{0}^{L} \frac{M\left(\frac{d M}{d X_{1}}\right)}{E I} d x$ (if using
Castigliano's Theorem)

Also,

$$
\Delta_{2}^{\prime}+\Delta_{21}+\Delta_{22}=0
$$

or
$\Delta_{1}^{\prime}+\delta_{11} X_{1}+\delta_{12} X_{2}=0$
$\Delta_{2}^{\prime}+\delta_{21} X_{1}+\delta_{22} X_{2}=0$

$\Delta=$ deflection due to external loads (with redundant supports removed).
$\delta_{11}=$ deflection at point 1 due to a unit force at point 1
$\delta_{12}=$ deflection at point 1 due to a unit force at point 2
This applies to couples and/or loads.
We can use Castigliano's Theorem, the unit load method, or any other method.
There are two unknowns X_{1}, X_{2}, and two equations (1), (2) \Rightarrow
Solve for the redundant supports. Then, find the rest of the support reactions. (clearly X_{1} and X_{2} as pictured will have negative values)
e.g. use conjugate beam

From equilibrium of the loaded conjugate beam,

$$
M_{A}=\frac{P a b^{2}}{L^{2}} \quad ; \quad M_{B}=\frac{P a^{2} b}{L^{2}}
$$

e.g. use superposition
 We know that $M_{A}=\frac{P a b^{2}}{L^{2}}$ for an arbitrary point load (derived in the previous example).
For this uniform load, if $P=w d x, a=x$, and $b=L-x$, then $M_{A}=\int_{0}^{L} \frac{w d x(x)(L-x)^{2}}{L^{2}}=\frac{1}{12} L^{2} w$
When faced with fixed-end beams or propped-cantilevered beams, reactions can be determined by this approach regardless of load distribution, as long as we know the reactions for an arbitrary point load (M_{A} for a propped-cantilevered beam from an arbitrary point load $=\frac{\operatorname{Pab}(L+b)}{2 L^{2}}$)
e.g. use unit load method

We can approach this problem by using a system of equations such as (1) and (2) on the previous page. We've already found " Δ_{l} ", " Δ_{2} ", and " Δ_{3} " from e.g. 2 in the "virtual force (unit load method)" section

General: $\delta=\int_{a b} \frac{M m}{E I} d x+\int_{b c} \frac{M m}{E I} d x+\int_{c d} \frac{M m}{E I} d x$
δ_{11} : deflection in direction 1 due to 1
δ_{12} : deflection in direction 1 due to 2
δ_{13} : deflection in direction 1 due to 3
δ_{21} : deflection in direction 2 due to 1
δ_{22} : deflection in direction 2 due to 2
δ_{23} : deflection in direction 2 due to 3
δ_{31} : deflection in direction 3 due to 1
δ_{32} : deflection in direction 3 due to 2
δ_{33} : deflection in direction 3 due to 3
$\left(\delta_{a}\right)_{1}=$ deflection at " a " in direction 1
$=\delta_{11}+\delta_{12}+\delta_{13}=\left[\int_{a b} \frac{\left(m_{l}\right)^{2}}{E I} d x+\int_{b c} \frac{\left(m_{l}\right)^{2}}{E I} d x+\int_{c d} \frac{\left(m_{l}\right)^{2}}{E I} d x\right]$
$+\left[\int_{a b} \frac{m_{2} m_{1}}{E I} d x+\int_{b c} \frac{m_{2} m_{1}}{E I} d x+\int_{c d} \frac{m_{2} m_{1}}{E I} d x\right]+\left[\int_{a b} \frac{m_{3} m_{1}}{E I} d x+\int_{b c} \frac{m_{3} m_{1}}{E I} d x+\int_{c d} \frac{m_{3} m_{1}}{E I} d x\right]$
$\left(\delta_{a}\right)_{1}=$ deflection at " a " in direction 2
$=\delta_{21}+\delta_{22}+\delta_{23}=\left[\int_{a b} \frac{m_{1} m_{2}}{E I} d x+\int_{b c} \frac{m_{1} m_{2}}{E I} d x+\int_{c d} \frac{m_{1} m_{2}}{E I} d x\right]$
$+\left[\int_{a b} \frac{\left(m_{2}\right)^{2}}{E I} d x+\int_{b c} \frac{\left(m_{2}\right)^{2}}{E I} d x+\int_{c d} \frac{\left(m_{2}\right)^{2}}{E I} d x\right]+\left[\int_{a b} \frac{m_{3} m_{2}}{E I} d x+\int_{b c} \frac{m_{3} m_{2}}{E I} d x+\int_{c d} \frac{m_{3} m_{2}}{E I} d x\right]$
$\left(\delta_{a}\right)_{1}=$ deflection at " a " in direction 3
$=\delta_{31}+\delta_{32}+\delta_{33}=\left[\int_{a b} \frac{m_{l} m_{3}}{E I} d x+\int_{b c} \frac{m_{l} m_{3}}{E I} d x+\int_{c d} \frac{m_{1} m_{3}}{E I} d x\right]$

$$
+\left[\int_{a b} \frac{m_{2} m_{3}}{E I} d x+\int_{b c} \frac{m_{2} m_{3}}{E I} d x+\int_{c d} \frac{m_{2} m_{3}}{E I} d x\right]+\left[\int_{a b} \frac{\left(m_{3}\right)^{2}}{E I} d x+\int_{b c} \frac{\left(m_{3}\right)^{2}}{E I} d x+\int_{c d} \frac{\left(m_{3}\right)^{2}}{E I} d x\right]
$$

$$
\begin{aligned}
& \delta_{11}=\frac{1}{E I}\left[\int_{0}^{10}(-x)^{2} d x+\int_{0}^{12}(-10)(-10) d x+\int_{0}^{10}(x-10) d x\right]=1867 \mathrm{kip}^{*} f t^{3} / E I \quad(\text { right }) \\
& \delta_{12}=\frac{1}{E I}\left[0+\int_{0}^{12}(-10)(x) d x+\int_{0}^{10}(x-10)(12) d x\right]=-1320^{k i p * f t^{3} / E I \quad(\text { left })} \\
& \delta_{13}=\frac{1}{E I}\left[\int_{0}^{10}(-x)(1) d x+\int_{0}^{12}(-10)(1) d x+\int_{0}^{10}(x-10)(1) d x\right]=-220^{k i p * f t^{3} / E I \quad(\text { left })}
\end{aligned}
$$

$$
\delta_{21}=\delta_{12}=-1320^{k i p * f t^{3}} / E I \quad(\text { down })
$$

$$
\delta_{22}=\frac{1}{E I}\left[0+\int_{0}^{12} x^{2} d x+\int_{0}^{10} 12^{2} d x\right]=2016^{k i p * f t^{3}} / E I \quad(\text { up })
$$

$$
\delta_{23}=\frac{1}{E I}\left[0+\int_{0}^{12}(x)(1) d x+\int_{0}^{10}(12)(1) d x\right]=1922^{k i p} * f t^{3} / E I \quad(\text { up })
$$

$$
\delta_{3 I}=\delta_{13}=-220^{k i p * f t^{2}} / E I \quad(c c w)
$$

$$
\delta_{32}=\delta_{23}=192^{k i p^{*} f t^{2}} / E I \quad(c w)
$$

$$
\delta_{33}=\frac{1}{E I}\left[\int_{0}^{10} d x+\int_{0}^{12} d x+\int_{0}^{10} d x\right]=32^{k i p * f t^{2} / E I \quad(c w) ~}
$$

$$
\left[\begin{array}{lll}
\delta_{11} & \delta_{12} & \delta_{13} \\
\delta_{21} & \delta_{22} & \delta_{23} \\
\delta_{31} & \delta_{32} & \delta_{33}
\end{array}\right]=\left[\begin{array}{ccc}
1867 & -1320 & -220 \\
-1320 & 2016 & 192 \\
-220 & 192 & 32
\end{array}\right]
$$

$$
\left[\begin{array}{c}
7776 \\
-13478 \\
-1210
\end{array}\right]+\left[\begin{array}{ccc}
1867 & -1320 & -220 \\
-1320 & 2016 & 192 \\
-220 & 192 & 32
\end{array}\right]\left[\begin{array}{l}
\mathrm{X}_{1} \\
\mathrm{X}_{2} \\
\mathrm{X}_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
\mathrm{X}_{1} \\
\mathrm{X}_{2} \\
\mathrm{X}_{3}
\end{array}\right]=\left[\begin{array}{l}
1.53 \\
7.20 \\
5.16
\end{array}\right] \begin{aligned}
& \mathrm{kips} \\
& \mathrm{kips} \\
& \mathrm{kip} * \mathrm{ft}
\end{aligned}
$$

note: $\left(1.2 \frac{\text { kips }}{f t}\right)(12 f t)=14.4$ kips $;$ From symmetry, $\frac{14.4}{2}=7.2 \mathrm{kips}$
note: Making a table greatly simplified this problem. Separating all of the deflections and summing is not necessary, but was done for clarity. The end result would be the same.

Using the method of consistent deformations in analyzing a frame would become intolerable if the problem involves as many redundant elements as a rigid frame usually does.
e.g.

$$
\begin{aligned}
& E=30,000 \mathrm{kips} / \mathrm{in}^{2} \\
& \frac{L(\mathrm{ft})}{A\left(\mathrm{in}^{2}\right)}=1 \text { for all members }
\end{aligned}
$$

note: $14+4>2 j=16$
(redundant to the $2^{\text {nd }}$ degree)
Two redundant elements; one in the reaction component (choose " e ") and the other in the bar (choose Cd).

The horizontal movement at support e and the relative axial displacement between cut ends of bar Cd are zero.

One way to think of it is:
Δ_{2} and δ_{21} cause joints C and d to move closer to each other along the line Cd. The cut ends overlap.

For beam Cd to be one piece, its unknown internal force X_{2}, must shorten the beam by δ_{22} so that the cut ends no longer overlap. The end result is a shorter beam Cd, but no displacement between cuts.

note: Deformation must always be considered when the truss is statically indeterminate. Using method of sections, for example, would not work because it would yield a singular solution.

Castigliano's compatibility equation (method of least work) Redundant forces

As mentioned at the beginning of the previous section, another way of finding redundants is through Castigiliano's Theorem:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\Delta_{1} \\
\Delta_{2} \\
\cdot \\
\Delta_{\mathrm{n}}
\end{array}\right]=\left[\begin{array}{c}
\frac{\mathrm{dW}}{\mathrm{dX}_{1}} \\
\frac{\mathrm{dW}}{\mathrm{dX}_{2}} \\
\cdot \\
\frac{\mathrm{dW}}{\mathrm{dX}_{\mathrm{n}}}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\vdots \\
0
\end{array}\right]} \\
& \text { e.g. } 1
\end{aligned}
$$

e.g. 1

Since e is a symmetrical midpoint,
$\frac{d W}{d M_{e}}=0$ or $\int \frac{M\left(\frac{d M}{d M_{e}}\right)}{E I} d x=0$
(slope at $e=0$
)
Our other condition will be
$\frac{d W}{d H_{e}}=0$ or $\int \frac{M\left(\frac{d M}{d H_{e}}\right)}{E I} d x=0$
$\frac{\text { member }}{e b} \frac{\text { origin }}{e} \quad \frac{\text { limit }}{0 \text { to } 6} \quad \frac{M}{M_{e}-\frac{1.2 x^{2}}{2}} \quad \frac{\frac{d M}{d M_{e}}}{1} \quad \frac{\frac{d M}{d H_{e}}}{0}$
ba b 0 to $10 \quad M_{e}-H_{e} x-21.6 \quad 1 \quad x$
due to 1.2
kip/ft load
" 2 " is in the numerator of the following expressions because we're only using half of the frame:

$$
\begin{align*}
& \frac{d W}{d M_{e}}=0 \Rightarrow \frac{2}{E I}\left[\int_{0}^{6}\left(M_{e}-\frac{1.2 x^{2}}{2}\right)(1) d x+\int_{0}^{10}\left(M_{e}+H_{e} x-21.6\right)(1) d x\right]=0 \\
& \Rightarrow .96 M_{e}+3 H_{e}-15.552=0 \tag{1}\\
& \frac{d W}{d H_{e}}=0 \Rightarrow \frac{2}{E I}\left[\int_{0}^{10}\left(M_{e}+H_{e} x-21.6\right)(x) d x\right]=0 \\
& \Rightarrow 3 M_{e}+20 H_{e}-64.8=0 \tag{2}
\end{align*}
$$

Solving (1) and (2) yields $H_{e}=1.525 \mathrm{kips}, M_{e}=11.4353 \mathrm{kips} * f t$
From equilibrium, $H_{A}=1.53 \mathrm{kips} ; M_{A}=5.08 \mathrm{kips}$ (skipped work)
This is exact to two decimals. Calculations for this problem in the previous section were rounded, resulting in the slight difference in solution of M_{A}.

This example could just as easily of been solved by using the unit load method at the cut. Method of least work is still too cumbersome for a highly redundant frame.
e.g. 2 - Same a previous example, but apply the method of least work at "a" and

$\Delta_{l}=\frac{1}{E I}\left[\int_{0}^{10}\left(-X_{3}+X_{1} x\right)\left(\frac{d M}{d X_{1}}=x\right) d x+\int_{0}^{12}\left(-X_{3}-X_{2} x+10 X_{1}\right)(10) d x\right.$
$\left.+\int_{0}^{10}\left(-X_{3}-12 X_{2}+10 X_{1}-X_{1} x\right)(10-x) d x\right]=1867 X_{1}-1320 X_{2}-220 X_{3} \frac{k i p * f t^{3}}{E I}$
$\Delta_{2}=\frac{1}{E I}\left[\int_{0}^{10}\left(-X_{3}+X_{1} x\right)\left(\frac{d M}{d X_{2}}=0\right) d x+\int_{0}^{12}\left(-X_{3}-X_{2} x+10 X_{1}\right)(-x) d x\right.$
$\left.+\int_{0}^{10}\left(-X_{3}-12 X_{2}+10 X_{1}-X_{1} x\right)(-12) d x\right]=-1320 X_{1}+2016 X_{2}+192 X_{3} \frac{k i p * f t^{3}}{E I}$
$\Delta_{3}=\frac{1}{E I}\left[\int_{0}^{10}\left(-X_{3}+X_{1} x\right)\left(\frac{d M}{d X_{3}}=-1\right) d x+\int_{0}^{12}\left(-X_{3}-X_{2} x+10 X_{1}\right)(-1) d x\right.$

$$
\begin{aligned}
& \left.+\int_{0}^{10}\left(-X_{3}-12 X_{2}+10 X_{1}-X_{1} x\right)(-1) d x\right]=-220 X_{1}+192 X_{2}+32 X_{3} \frac{k i p * f t^{2}}{E I} \\
& {\left[\begin{array}{c}
7776 \\
-13478 \\
-1210
\end{array}\right]+\left[\begin{array}{l}
1867 \mathrm{X}_{1}-1320 \mathrm{x}_{2}-220 \mathrm{X}_{3} \\
-1320 \mathrm{X}_{1}+2016 \mathrm{X}_{2}+192 \mathrm{X}_{3} \\
-220 \mathrm{X}_{1}+192 \mathrm{X}_{2}+32 \mathrm{X}_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{X}_{2} \\
\mathrm{X}_{3}
\end{array}\right]=\left[\begin{array}{l}
1.53 \\
7.20 \\
5.16
\end{array}\right] \begin{array}{l}
\mathrm{kips} \\
\mathrm{kips} \\
\mathrm{kip} * \mathrm{ft}
\end{array}}
\end{aligned}
$$

note: Δ_{a} did not have to be worked out separately - the moments $M=0, M=\frac{1.2 x^{2}}{2}$, and $M=86.4$ could have been added to each respective integrand. The end result would be the same.
note: regardless of what deflections you choose to separate, or whether you use the unit load method or Castigliano's Theorem, separating the moments in a table, before integrating, is often a good idea.
egg. 3
e.g. 3

(from $\Sigma \mathrm{M}_{\mathrm{c}}$ of right side FBD)

(1) $+(2)$
reactions on the left in (1) and (2) are found from equilibrium of the whole beam after $\frac{w L}{4}$ and $\frac{2 M_{1}}{L}$ are known, respectively.

Our redundant unknown is a ccu moment couple just to the left of the pin, which decreases the relative rotation (makes $\theta_{c}{ }^{-}$less steep) and an equal cw moment couple just to the right of the pin, which decreases the relative rotation (makes $\theta_{c}{ }^{+}$more steep).

So, we call these moments M_{1} as shown in (2). In other words, we defined an M_{1} that causes some rotation $\left(\theta_{c}{ }^{-}-\theta_{c}{ }^{+}\right.$to cancel the effect of the pin). In the real beam, this

$x=0^{+}$:
$V\left(0^{+}\right)=\frac{3 w L}{4}-\frac{2 M_{1}}{L} \quad M\left(0^{+}\right)=\frac{-w L^{2}}{4}+2 M_{1}$
$0^{+} \leq x \leq L^{-}$:
$V(x)=\frac{3 w L}{4}-\frac{2 M_{1}}{L}-\int_{0}^{x} w d x=\frac{3 w L}{4}-\frac{2 M_{1}}{L}-w x$
$M(x)=\frac{-w L^{2}}{4}+2 M_{1}+\int_{0}^{x} \frac{3 w L}{4}-\frac{2 M_{1}}{L}-w x d x=\frac{-.5\left[L w\left(x^{2}-1.5 L x+.5 L^{2}\right)+4 M_{l}(x-L)\right]}{L}$
(equivalent to finding the BMD for (1) and (2) separately and summing)
$x=L^{-}:$
$V\left(L^{-}\right)=\frac{-w L}{4}-\frac{2 M_{1}}{L} \quad M\left(L^{-}\right)=0$
$\frac{d W}{d M_{1}}=\frac{1}{E I} \int_{0}^{L}\left(\frac{-.5\left[L w\left(x^{2}-1.5 L x+4 M_{I}(x-L)\right]\right.}{L}\right)\left(\frac{-2(x-L)}{L}\right) d x=0$
$\Rightarrow M_{1}=\frac{w L^{2}}{16} \therefore \quad R_{b}=\frac{w L}{4}+\frac{2\left(\frac{w L^{2}}{16}\right)}{L}=\frac{3}{8} L w$
note: Axial deformation is neglected for beams and frames in the method of consistent deformations, least work, and other methods to come. But what effect does this have on the accuracy of the calculations of redundant forces?

Composite Structure

$$
\text { e.g. } 1
$$

$$
\begin{aligned}
& \mathrm{W}=\int \frac{M^{2} d L}{2 E I}+\sum \frac{S^{2} L_{l}}{2 A E} \\
& \frac{d W}{d \Psi}=0 \\
& W=\int_{0}^{L / 2} \frac{x^{2} \Psi^{2} \sin ^{2} \alpha}{2 E I} d x \\
& +\int_{L / 2}^{L} \frac{\left(x \Psi \sin \alpha-P(x-L / 2)^{2}\right.}{2 E I} d x \\
& +\frac{\Psi^{2} \cos ^{2} \alpha L}{2 A E}+\frac{\Psi^{2} L_{I}}{2 A_{l} E_{I}} \\
& \frac{d W}{d \Psi}=\int_{0}^{L / 2} \frac{x^{2} \Psi \sin ^{2} \alpha}{E I} d x
\end{aligned}
$$

(axial deformation and bending)
note: If $\alpha \rightarrow 90^{\circ}$ and $E_{1} \rightarrow \infty$, then we have a prop-cantilevered beam with $\Psi=\frac{5 P}{16}$

Choose values:

$$
\begin{aligned}
E= & E_{l}, P=20, \alpha=30^{\circ}, L=10, L_{l}=12, I=\frac{\pi}{64}(.3)^{4}, A=\pi(.3)^{2}, A_{l}=\pi(.1)^{2} \\
& \Rightarrow(\text { skip work) } \\
\Psi= & 12.47 \text { (with axial deformation) } \\
\Psi= & 12.50 \text { (without inclusion of axial deformation) }
\end{aligned}
$$

e.g. 2

$$
\frac{\delta_{2}}{2 b}=\frac{\delta_{1}}{b} \Rightarrow \delta_{2}=2 \delta_{1} \quad \frac{T_{2}(.3)}{E\left(\frac{\pi}{4}(.003)^{2}\right)}=\frac{2 T_{1}(.4)}{E\left(\frac{\pi}{4}(.004)^{2}\right)}
$$

$T_{2}=1.4175 \mathrm{kN} \quad T_{1}=.945 \mathrm{kN}$ (axial deformation only)
(different lengths and areas will result in different solutions)
Bending Only :

ADFB deforms in bending ; no axial deformation allowed in DC or FE

Unit load method:
$\dagger_{\sum M_{A}}: R_{F}(2 b)-1.26(3 b)=0 \Rightarrow R_{F}=1.89 \mathrm{kN}$ $\uparrow^{+} \sum F_{y}: 1.89-1.26-R_{A}=0 \Rightarrow R_{A}=.63 \mathrm{kN}$

$$
\begin{aligned}
& 0 \leq x \leq 2 b^{-}: \quad M(x)=-.63 x \\
& 2 b^{+} \leq x \leq 3 b^{-}: \quad M(x)=1.26 x-3.78 b
\end{aligned}
$$

$$
\begin{aligned}
& \Delta=\int_{0}^{b} \frac{(-.63 x)(-.5 x)}{E I} d x+\int_{b}^{2 b} \frac{(-.63 x)(.5 x-b)}{E I} d x+\int_{2 b}^{3 b} \frac{(1.26 x-3.78 b)(0)}{E I} d x=\frac{.315 b^{3}}{E I} \\
& \delta=\int_{0}^{b} \frac{(-.5 x)^{2}}{E I} d x+\int_{b}^{2 b} \frac{.5 x-b)^{2}}{E I} d x+0=\frac{.1667 b^{3}}{E I} \\
& \Delta+\delta T_{1}=0 \quad \frac{.315 b^{3}}{E I}+\frac{.1667 b^{3}}{E I} T_{1}=0 \\
& \begin{array}{l}
T_{1}=-1.890 k N \quad \\
\text { (bending only) }
\end{array} \quad T_{2}=2.835 \mathrm{kN} \quad \text { (from equilibrium or from same process on } T_{2} \text {) }
\end{aligned}
$$

To treat the structure as a composite member, we need the moment of inertia I for beam ADFB, as well as " b " :

Take $I=\frac{\pi}{64}(.006)^{4} m^{4}, b=.3 m$
Choose T_{1} as the redundant:
Total elongation of member $D C=\left(\frac{.315 b^{3}}{E I}+\frac{.16667 b^{3} T_{1}}{E I}\right)+\frac{2 T_{1}(.4)}{E\left(\frac{\pi}{4}(.004)^{2}\right)}=0$
$\Rightarrow T_{l}=-1.888 k N$
The inclusion of axial deformation has no significant effect on the solution, for this problem.
note: Previous analysis of the statically indeterminate one bay frame (with the beam loaded uniformly) resulted in each vertical support reaction being equal to exactly onehalf of the total load (obviously the exact answer) despite the neglecting of axial deformation. This is because this frame was symmetrical (there are no relative axial displacements).

Moment distribution method - Joint moments in a frame

Take the propped-cantilevered beam shown. It has no load. We'd like to know the general relationship between θ_{a} and M_{ab} (end moment of member ab at "a") or M_{ba} (end moment of member ab at "b")
$E I \frac{d^{4} v}{d x^{4}}=\omega=0$
Initial conditions: $v(0)=0 \quad v(L)=0 \quad v^{\prime}(0)=\theta_{a} \quad v^{\prime}(L)=0$
$v=x\left(1-\frac{\mathrm{x}}{\mathrm{L}}\right)^{2} \theta_{\mathrm{a}} \quad$ (skipped work)
$\frac{d^{2} v}{d x^{2}}=\frac{-M}{E I} \Rightarrow M(x)=E \frac{I}{L}\left(4-6 \frac{x}{L}\right) \theta_{a}$
So, $M_{a b}=4 E \frac{I}{L} \theta_{a}$ and $M_{b a}=2 E \frac{I}{L} \theta_{a}$
OR
$M_{a b}=S_{a b} \theta_{a}$, where $S_{a b}=S_{b a}=$ member stiffness $=4 E_{a b}$
where $\mathrm{k}_{\mathrm{ab}}=\mathrm{k}_{\mathrm{ba}}=$ stiffness factor $=\frac{\mathrm{I}}{\mathrm{L}}$

Lock the structure so that there are four fixed-end beams. Find the FEMs, including the total moment M at the center (ccw). Create an opposite moment shown (cw moment M) to "unlock" the beam. Joint j now rotates through an angle θ. Now, picture (e) is equivalent to picture (a) and we can proceed with the moment distribution.

$\mathrm{m}_{\mathrm{ja}}=\mathrm{S}_{\mathrm{ja}} \theta$	Sum of the moments must equal
$\mathrm{m}_{\mathrm{jb}}=\mathrm{S}_{\mathrm{jb}} \theta$	zero, so, $\left(\mathrm{S}_{\mathrm{ja}}+\mathrm{S}_{\mathrm{jb}}+\mathrm{S}_{\mathrm{jc}}\right.$
$\mathrm{m}_{\mathrm{jc}}=\mathrm{S}_{\mathrm{jc}} \theta$	$\left.+\mathrm{S}_{\mathrm{jd}}\right) \theta=\mathrm{M}$, where M is the
$\mathrm{m}_{\mathrm{jd}}=\mathrm{S}_{\mathrm{jd}} \theta$	"external" moment at joint j
(1)	

(all θ are equal due to continuity)
If the members have the same E , but not necessarily the same I or L, then $4 \mathrm{E}\left(\mathrm{k}_{\mathrm{ja}}+\mathrm{k}_{\mathrm{j} b}+\mathrm{k}_{\mathrm{jc}}+\mathrm{k}_{\mathrm{jd}}\right) \theta=\mathrm{M} \Rightarrow \theta=\frac{\mathrm{M}}{4 \mathrm{E} \sum \mathrm{k}}$
$\Sigma \mathrm{k}$ includes all members that connect at rotating joint (can vary depending on which end of beam)

From (1) and (2),

$$
\begin{align*}
& m_{\mathrm{ja}}=\mathrm{S}_{\mathrm{ja}} \frac{\mathrm{M}}{4 \mathrm{E} \sum \mathrm{k}}=\frac{4 \mathrm{EI}}{\mathrm{~L}} \frac{\mathrm{M}}{4 \mathrm{E} \sum \mathrm{k}}=\frac{\mathrm{k}_{\mathrm{ja}}}{\sum \mathrm{k}} \mathrm{M}=\mathrm{D}_{\mathrm{ja}} \mathrm{M} \\
& \mathrm{~m}_{\mathrm{jb}}=\frac{\mathrm{k}_{\mathrm{jb}}}{\sum \mathrm{k}} \mathrm{M}=\mathrm{D}_{\mathrm{jb}} \mathrm{M} \\
& \mathrm{~m}_{\mathrm{jc}}=\frac{\mathrm{k}_{\mathrm{jc}}}{\sum \mathrm{k}} \mathrm{M}=\mathrm{D}_{\mathrm{jc}} \mathrm{M} \\
& \mathrm{~m}_{\mathrm{jd}}=\frac{\mathrm{k}_{\mathrm{jd}}}{\sum \mathrm{k}} \mathrm{M}=\mathrm{D}_{\mathrm{jd}} \mathrm{M} \tag{e}
\end{align*}
$$

(e)

These are called distributed moments (DMs). $D=$ distribution factor $=\frac{\mathrm{k}}{\sum \mathrm{k}}$
Assumes constant E - usually the case since beams made of different materials are rarely connected together.
note: D depends only on member dimensions. The individual moments are just ratios of each other that add up to M - i.e. the "external" moment, M , is distributed among the connecting beams, according to their relative dimensions (stiffnesses).
$\mathrm{m}_{\mathrm{aj}}, \mathrm{m}_{\mathrm{bj}}, \mathrm{m}_{\mathrm{cj}}, \mathrm{m}_{\mathrm{dj}}$ - called the carry-over-moments, need to be found.
M_{ab} and M_{ba}, which were found on the previous page, can be equated with a "carry-over-factor" $; \mathrm{M}_{\mathrm{ba}}=\mathrm{C}_{\mathrm{ab}} \mathrm{M}_{\mathrm{ab}} ; \mathrm{C}_{\mathrm{ab}}=\mathrm{C}_{\mathrm{ba}}=\frac{1}{2}$
So, $\quad \mathrm{m}_{\mathrm{aj}}=\frac{1}{2} \mathrm{~m}_{\mathrm{ja}} ; \mathrm{m}_{\mathrm{bj}}=\frac{1}{2} \mathrm{~m}_{\mathrm{jb}} ; \mathrm{m}_{\mathrm{cj}}=\frac{1}{2} \mathrm{~m}_{\mathrm{jc}} ; \mathrm{m}_{\mathrm{dj}}=\frac{1}{2} \mathrm{~m}_{\mathrm{jd}}$
These are called carry-over-moments (COMs).
$\mathrm{M}_{\mathrm{ja}}=(\mathrm{FEM})_{\mathrm{ja}}+\mathrm{m}_{\mathrm{ja}}(=\mathrm{DM})+\mathrm{m}_{\mathrm{j} a}(=\mathrm{COM})$
$\mathrm{M}_{\mathrm{aj}}=(\mathrm{FEM})_{\mathrm{aj}}+\mathrm{m}_{\mathrm{aj}}(=\mathrm{DM})+\mathrm{m}_{\mathrm{aj}}(=\mathrm{COM})$
note: It is not yet clear how to find end moments for a frame when there is more than one joint that can rotate
note: sign conventions will become clear in the following examples
e.g. 1
e.g. 1

$$
\begin{aligned}
& \text { beam ba: } \frac{I / 60}{I(1 / 60+1 / 40)}=.4 \\
& \text { beam bc: } \frac{I / 40}{I(1 / 60+1 / 40)}=.6
\end{aligned}
$$

Clockwise moments $=$ positive $($ FEMs can be found in Appendix B)
$(F E M)_{b a}=300 \quad(F E M)_{a b}=-300 \quad(F E M)_{b c}=-100 \quad(F E M)_{c b}=100$ (skipped work) $M_{b}=-(300+(-100))=-200($ Total FEM at b)
Distributed moments: $m_{b a}=.4(-200)=-80 k i p s * f t ; m_{b c}=.6(-200)=-120 k i p s * f t$
Carry-over-moments: $m_{a b}=\frac{1}{2} m_{b a}=-40 k i p s * f t ; m_{c b}=\frac{1}{2} m_{b c}=-60 \mathrm{kips} * f t$
(COM has same sign as DM)

	ab	ba	bc	cb	
$\frac{\mathrm{k}}{\sum \mathrm{k}}$	0	. 4	. 6	0	$M_{a b}=-340$ kips $* f t$ $M=220$ kips $* f t$
FEM	-300	300	-100	100	$\begin{aligned} & M_{b a}=220 k i p s * f t \\ & M_{b c}=-220 k i p s * f t \end{aligned}$
DM		-80	-12		$M_{c b}=40$ kips $* f t$
COM	-40			-60	
Σ	-340	220	-220	40	

If there are multiple rotating joint, then the joints must be continually locked and unlocked until the carry-over-moments are considered negligible (see the following example)
note: For all cycles : At a fixed support, DM is zero. At a joint across from a fixed support, COM is zero. For a span with no load, FEM is zero (this does not necessarily mean that $\mathrm{M}=0$ for that span).
e.g. 2

e.g. 3
e.g. 3

note: So far, joint translations are ignored in the moment distribution method. This can have an effect on the accuracy of joint moments. Previous analysis of the one bay frame (with beam uniformly loaded) resulted in the exact solution because it is symmetrical (and hence there are no relative displacements in the columns), and there is no side sway, from inspection. Lateral loading and/or non-symmetrical gravity loading can cause joint translations.

Modified stiffness method - Shortcut for certain special cases

Special cases :
$\mathrm{aj}=$ the most basic member with a single DM at ja and COM at aj
$\mathrm{bj}=$ supported by a pin
$\mathrm{cj}=$ symmetrical
$\mathrm{dj}=$ antisymmetrical

General Basic case (aj)

Basic: $\mathrm{k}_{\mathrm{ja}}{ }^{\prime}=\mathrm{k}_{\mathrm{ja}}$, where $\mathrm{k}^{\prime}=$ "modified stiffness factor"
Pinned support : $\mathrm{M}_{\mathrm{jb}}=3 \mathrm{Ek}_{\mathrm{jb}} \theta=4 \mathrm{Ek}_{\mathrm{jb}}{ }^{\prime} \theta$, where $\mathrm{k}_{\mathrm{jb}}{ }^{\prime}=\frac{3}{4} \mathrm{k}_{\mathrm{jb}}$
Symmetrical : $\mathrm{M}_{\mathrm{jc}}=2 \mathrm{Ek}_{\mathrm{jc}} \theta=4 \mathrm{Ek}_{\mathrm{jc}}{ }^{\prime} \theta$, where $\mathrm{k}_{\mathrm{jc}}{ }^{\prime}=\frac{1}{2} \mathrm{k}_{\mathrm{jc}}$

Antisymmetrical : $\mathrm{M}_{\mathrm{jd}}=6 \mathrm{Ek}_{\mathrm{jd}} \theta=4 \mathrm{Ek}_{\mathrm{jd}}{ }^{\prime} \theta$, where $\mathrm{k}_{\mathrm{jd}}{ }^{\prime}=\frac{3}{2} \mathrm{k}_{\mathrm{jd}}$

$$
\mathrm{M}_{\mathrm{ja}}=\frac{\mathrm{k}_{\mathrm{ja}}{ }^{\prime}}{\sum \mathrm{k}^{\prime}} \mathrm{M} \quad \mathrm{M}_{\mathrm{jb}}=\frac{\mathrm{k}_{\mathrm{jb}}{ }^{\prime}}{\sum \mathrm{k}^{\prime}} \mathrm{M} \quad \mathrm{M}_{\mathrm{jc}}=\frac{\mathrm{k}_{\mathrm{jc}}{ }^{\prime}}{\sum \mathrm{k}^{\prime}} \mathrm{M} \quad \mathrm{M}_{\mathrm{jd}}=\frac{\mathrm{k}_{\mathrm{jd}}{ }^{\prime}}{\sum \mathrm{k}^{\prime}} \mathrm{M}
$$

e.g. 60 kips 60 kips

$$
\begin{aligned}
& F E M_{b c}=F E M_{c b}=\left(\frac{10}{40}\right)^{2}\left(\frac{30}{40}\right)(60)(40) \\
& -\left(\frac{10}{40}\right)\left(\frac{30}{40}\right)^{2}(60)(40)=-225 \mathrm{kips} \\
& k_{b a}=\frac{2 I}{30}=\frac{I}{15} \quad k_{b c}=\frac{2 I}{40}=\frac{I}{20}=k_{c b} \\
& k_{c d}=\frac{2 I}{30}=\frac{I}{15} \quad k_{b e}=\frac{I}{20} \quad k_{c f}=\frac{I}{20}
\end{aligned}
$$

modified stiffness:
$k_{b a}{ }^{\prime}=\frac{3}{4} k_{b a}=.05 I=k_{c d}{ }^{\prime}$ (pinned/roller support)
$k_{b c}{ }^{\prime}=\frac{3}{2} k_{b c}=.075 I=k_{c b}{ }^{\prime} \quad($ antisymmetrical $)$
$k_{b e}{ }^{\prime}=k_{b e}=.05 I=k_{c f}{ }^{\prime}$

	ab	eb	be	ba	bc	cb	cd	cf	fc	dc
k^{\prime}										
इk	1	0	. 2857	. 2857	. 4286	. 4286	. 2857	. 2857	0	1
FEM					-225	-225				
DM			64.3	64.3	96.4	96.4	64.3	64.3		
COM		32.15							32.15	
Σ	0	32.15	64.3	64.3	-128.6	-128.6	64.3	64.3	32.15	0

note: only one cycle needed for this problem with modified stiffness approach
note: since the frame is symmetrical, we don't really need to tabularize all of the moments, but rather just half of the frame

This problem is solved without modified stiffness in Hsieh (1995).

Treatment of joint translations

If there are joint translations, then
$\mathrm{M}_{\mathrm{ja}}=\mathrm{DM}_{\mathrm{ja}}+\mathrm{COM}_{\mathrm{ja}}+\mathrm{FEM}_{\mathrm{ja}}$ + additional joint translation moment
relative displacement, shown, results in negative moment, shown
$\mathrm{R}=\Delta / \mathrm{L}$
e.g. 1
e.g. 1

cb
1

0
method $1 \frac{9 E I \Delta}{L^{3}}$ from $\sum M_{b}=0$ for member $a b$

note: method 2 does not even use the formula $M=-6 E k R$. Since the solutions for method 1 and 2 match correctly, we know our derivation for $M=-6 E k R$ is correct. Method 2 is more manageable, but how can we use method 2 if the loads are not only located at the joints?
e.g. 2

(a)

	$\underline{\mathrm{ab}}$	ba	bc	cb
$\frac{\mathrm{k}^{\prime}}{\Sigma \mathrm{k}^{\prime}}$	0	1/3	2/3	1
FEM	-3	3	-6	6
DM		1	2	-6
COM	. 5		-3	

1
COM
Σ

(from $\sum M_{b}$ for member ab)
(b)

From $\sum M_{b}=0$ for member $a b$ and $\sum F_{x}=0$ for the whole frame, the correction factor is $2.5 / 22.5$, where 22.5 is from the previous example.

So, moments for b :
$\begin{array}{rlll}-8.33 & \frac{\mathrm{ab}}{-6.67} & \frac{\mathrm{bc}}{6.67} & \frac{\mathrm{cb}}{0}\end{array}$
$(a)+(b) \Rightarrow M_{a b}=-10.33 \quad M_{b a}=-1.67 \quad M_{b c}=1.67 \mathrm{kN} * m$
note: moment distribution can be used to find moments that include the effect of sway for asymmetrical vertical loadings, and for multi-story frames, but it quickly becomes cumbersome to do by hand.

Slope-deflection method - Joint moments in a frame

Consider member ab, which is isolated from a loaded rigid frame (not shown).

Sign convention: all values shown are positive.

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{ab}}=\frac{4 \mathrm{EI} \theta_{\mathrm{a}}}{\mathrm{~L}}+\frac{2 \mathrm{EI} \theta_{\mathrm{b}}}{\mathrm{~L}}-\frac{6 \mathrm{EI} \Delta}{\mathrm{~L}^{2}}+(\mathrm{FEM})_{\mathrm{ab}} \\
& \mathrm{M}_{\mathrm{ba}}=\frac{2 \mathrm{EI} \theta_{\mathrm{a}}}{\mathrm{~L}}+\frac{4 \mathrm{EI} \theta_{\mathrm{b}}}{\mathrm{~L}}-\frac{6 \mathrm{EI} \Delta}{\mathrm{~L}^{2}}+(\mathrm{FEM})_{\mathrm{ba}}
\end{aligned}
$$

Recall these values from the derivations in the sections on "Moment distribution method" and "Treatment of joint translations".

Manipulating a bit;
$\mathrm{M}_{\mathrm{ab}}=2 \mathrm{Ek}_{\mathrm{ab}}\left(2 \theta_{\mathrm{a}}+\theta_{\mathrm{b}}-3 \mathrm{R}_{\mathrm{ab}}\right)+\mathrm{FEM}_{\mathrm{ab}}$
$\mathrm{M}_{\mathrm{ba}}=2 \mathrm{Ek}_{\mathrm{ba}}\left(2 \theta_{\mathrm{b}}+\theta_{\mathrm{a}}-3 \mathrm{R}_{\mathrm{ba}}\right)+\mathrm{FEM}_{\mathrm{ba}}$
$\mathrm{R}=\frac{\text { Re lative displacement }}{\mathrm{L}}=\frac{\Delta}{\mathrm{L}}\left(\mathrm{R}_{\mathrm{ab}}=\mathrm{R}_{\mathrm{ba}}\right)$
If joint "a" is a rigid support, then $\theta_{a}=0$ (i.e. $\left.(D M)_{a b}=0\right)$
e.g. 1

Assume end moments are known. This is sufficient to find all forces at the joints, from equilibrium. The result (all forces in terms of end moments) is shown. But now there is only one equilibrium equation left (proof in e.g. 3) and we don't yet know the moments.

$$
\begin{aligned}
& M_{a b}=2 E k_{a b}\left(\theta_{b}-3 R\right)-F E M_{a b}=2 E\left(\frac{I}{20}\right)\left(\theta_{b}-3 R\right)-25 \\
& M_{b a}=2 E\left(\frac{I}{20}\right)\left(2 \theta_{b}-3 R\right)+25
\end{aligned}
$$

For $M_{a b}$ and $M_{b a}, \theta_{a}=0$ since " a " is a rigid support

$$
\begin{aligned}
M_{b c} & =2 E\left(\frac{I}{10}\right)\left(2 \theta_{b}+\theta_{c}\right) \\
M_{c b} & =2 E\left(\frac{I}{10}\right)\left(2 \theta_{c}+\theta_{b}\right)
\end{aligned}
$$

For $M_{c b}$ and $M_{b c}, R=0$ and $F E M=0$ (no relative displacement since axial deformation in $a b$ and $c d$ is neglected) (beam bc is also unloaded)

$$
\begin{aligned}
M_{c d} & =2 E\left(\frac{I}{20}\right)\left(2 \theta_{c}-3 R\right) \\
M_{d c} & =2 E\left(\frac{I}{20}\right)\left(\theta_{c}-3 R\right)
\end{aligned}
$$

For $M_{c d}$ and $M_{d c}, \theta_{d}=0$ and $F E M=0$ (rigid support at " d ")(beam cd is unloaded)
All R are equal for this frame (axial deformation in bc is neglected).
Including $\theta_{b}, \theta_{c}, R\left(\right.$ or $\left.\frac{\Delta}{20}\right)$, there are 9 unknowns.

Equations:

6 above $+\left(M_{b a}=-M_{b c}\right)+\left(M_{c b}=-M_{c d}\right)+\left[10+\left(\frac{M_{a b}+M_{b a}}{20}-5\right)+\left(\frac{M_{c d}+M_{d c}}{20}\right)=0\right]$
$=9$ equations

The last term in the above expression comes from $\sum F_{x}=0$ for the whole structure, which is the extra equation of equilibrium mentioned previously.

Solving, yields:

$$
\begin{aligned}
& \theta_{c}=\frac{50.48}{E I} \quad \theta_{b}=\frac{-12.02}{E I} \quad R=\frac{92.95}{E I} \\
& M_{a b}=-54.10 \quad M_{b a}=-5.30 \quad M_{b c}=5.30 \quad M_{c b}=17.80 \quad M_{c d}=-17.80 \quad M_{d c}=-22.80 \\
& (k i p * f t)(\text { positive }=c w)
\end{aligned}
$$

All joint forces have already been found in terms of the moments, so they can be solved for numerically, and bending moment diagrams can be drawn.
e.g. 2

10 ft
EI Constant

$$
\begin{aligned}
& M_{b c}=2 E \frac{I}{12}\left(2 \theta_{b}+\theta_{c}\right)-14.4 \\
& M_{c b}=2 E \frac{I}{12}\left(2 \theta_{c}+\theta_{b}\right)+14.4
\end{aligned}
$$

For member $b c, R=0$

$$
\begin{aligned}
M_{c d} & =2 E \frac{I}{10}\left(2 \theta_{c}\right) \\
M_{d c} & =2 E \frac{I}{10}\left(\theta_{c}\right)
\end{aligned}
$$

For member $c d, \theta_{d}=0, R=0, F E M=0$
Additional equations: $M_{b a}=-M_{b c} \quad M_{c d}=-M_{c b}$
Solve $\Rightarrow \theta_{b}=\frac{25.4}{E I} \quad \theta_{c}=\frac{-25.4}{E I}$
$M_{a b}=5.08 \quad M_{b a}=10.16 \quad M_{b c}=-10.16 \quad M_{c b}=10.16 \quad M_{c d}=-10.16 \quad M_{d c}=-5.08$ (kip * ft)

This is the same solution as the other methods, as expected.
Joint translations can often be related to each other through inspection. Sometimes joint translations relationships are required in order to solve for the joint moments.

From inspection, we can see that member bc will deform as shown, with $\theta_{b}=\theta_{c}$, because if an equal and opposite force is applied at c , then member bc (and the frame as a whole) must deform back to its original position (neglecting axial deformation in bc).
e.g. 3
e.g. 3

$$
(F E M)_{b c}=\frac{-(1)(9)^{2}}{12}=-6.750 \mathrm{kip} * f t=-F E M_{c b}
$$ $(F E M)_{c d}=\frac{-(1)(16)^{2}}{12}=-21.333 k i p * f t=-F E M_{d c}$ (skipped work)

$$
M_{a b}=2 E \frac{I}{15}\left(\theta_{b}-3 R_{b a}\right)
$$

(1)

$$
M_{b a}=2 E \frac{I}{15}\left(2 \theta_{b}-3 R_{b a}\right)
$$

(2)

$$
M_{b c}=2 E \frac{I}{\sqrt{9^{2}+12^{2}}}\left(2 \theta_{b}+\theta_{c}-3 R_{c b}\right)-6.75
$$

(3)

$$
\begin{align*}
& M_{c b}=2 E \frac{I}{\sqrt{9^{2}+12^{2}}}\left(2 \theta_{c}+\theta_{b}-3 R_{c b}\right)+6.75 \tag{4}\\
& M_{c d}=2 E \frac{I}{\sqrt{16^{2}+12^{2}}}\left(2 \theta_{c}+\theta_{d}-3 R_{d c}\right)-21.333 \\
& M_{d c}=2 E \frac{I}{\sqrt{16^{2}+12^{2}}}\left(2 \theta_{d}+\theta_{c}-3 R_{d c}\right)+21.333 \\
& M_{d e}=2 E \frac{I}{15}\left(2 \theta_{d}-3 R_{d e}\right) \tag{7}\\
& M_{b a}=-M_{b c}
\end{align*}
$$

(15 unknowns; we need 4 more equations)

Additional equilibrium equations will introduce additional unknowns. In this case, as we will see below, introducing the additional equations of equilibrium (for each of the four segments of the structure) will only help to eliminate two unknowns.

10 unknowns here (moments treated as known)
12 equations.
Recall that we needed 14 equations, in this case, to solve for everything, since we needed to gain 4 additional from before.

While we're at it though, we can solve for joint forces in terms of moments (shown below) for later.

note: If we want to simply know the static indeterminacy of the frame, then we can concentrate solely on the picture above. We can consider the 18 unknowns (note that the forces are already assumed equal and opposite, as drawn, but the moments are not). The static indeterminacy will be the same, regardless of our method of approach.

12 equations $+\left(M_{b a}=-M_{b c}\right)+\left(M_{c b}=-M_{c d}\right)+\left(M_{d c}=-M_{d e}\right)=15$ equations
18 unknowns -15 equations $=3 \rightarrow$ static indeterminacy of the frame
$\left(3 b+r=18,3 j=15 ; 18\right.$ unknowns >15 equations \Rightarrow indeterminate to $3^{r d}$ degree $)$
Returning to the slope-deflection equations, there are 15 unknowns and 13 equations (11 from before and the 2 additional from above). The additional two equations have not been explicitly written here, but they can come from $\Sigma M=0$ (12), $\Sigma F_{y}=0$ (13) for the frame as a whole, in terms of the joint moments shown above.

We still need two more equations, but all equilibrium equations have now been used (if you try to use more equilibrium equations, solving will return a singular solution)

Our only option is to create two more equations by using deflection relationships.

Instead of 2 more equations, we obtained 6 more equations and 4 more unknowns $\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}\right)$. But this is fine - 19 equations, 19 unknowns
SOLVE
$\Rightarrow \theta_{b}=\frac{.035(82.8)}{E I} \quad \theta_{c}=\frac{82.8}{E I} \quad \theta_{d}=\frac{-.755(82.8)}{E I}$ radians
$R_{b a}=\frac{-.77(82.8)}{E I} \quad R_{c b}=\frac{.95(82.8)}{E I} \quad R_{d c}=\frac{-.53(82.8)}{E I} \quad R_{d e}=\frac{.414(82.8)}{E I} \mathrm{rad} / \mathrm{ft}$
$\Delta_{l}=\frac{11.6(82.8)}{E I} \quad \Delta_{2}=\frac{6.2(82.8)}{E I} \quad \Delta_{3}=\frac{14.25(82.8)}{E I} \quad \Delta_{4}=\frac{10.7(82.8)}{E I} \mathrm{ft}$
$M_{a b}=26.0 \quad M_{b a}=26.4 \quad M_{b c}=-26.4 \quad M_{c b}=-2.2 \quad M_{c d}=2.2 \quad M_{d c}=30.4$
$M_{d e}=-30.4 \quad M_{e d}=-22.0 \mathrm{kips} * f t$
e.g. 4
(a)

$M_{a b}=\frac{2 E(I)}{6}\left(0+\theta_{b}-0\right)-3$
$M_{b a}=\frac{2 E(I)}{6}\left(2 \theta_{b}+0-0\right)+3$
$M_{b c}=\frac{2 E(8 / 3 I)}{6}\left(2 \theta_{b}+0-0\right)-6$
$M_{c b}=\frac{2 E(8 / 3 I)}{6}\left(0+\theta_{b}-0\right)+6$
$M_{b a}=-M_{b c}$
SOLVE \Rightarrow
$M_{a b}=-2.591 \quad M_{b a}=3.818$
$M_{b c}=-3.818 \quad M_{c b}=7.091$
(b)
$+\quad M_{a b}=\frac{2 E(I)}{6}\left(0+\theta_{b}\right)$
$M_{b a}=\frac{2 E(I)}{6}\left(2 \theta_{b}\right)$
$M_{b c}=\frac{2 E(8 / 3 I)}{6}\left(2 \theta_{b}+\theta_{c}\right)$
(b)

$$
M_{c b}=\frac{2 E(8 / 3 I)}{6}\left(2 \theta_{c}+\theta_{b}\right)
$$

$$
M_{c b}=-7.091
$$

$$
M_{b a}=-M_{b c}
$$

SOLVE $\Rightarrow M_{a b}=.591 \quad M_{b a}=1.182 \quad M_{b c}=-1.182 \quad M_{c b}=-7.091$
$(a)+(b) \Rightarrow M_{a b}=-2 \quad M_{b a}=5 \quad M_{b c}=-5 \quad M_{c b}=0 \quad k N * m$

OR
$M_{a b}=\frac{2 E(I)}{6}\left(0+\theta_{b}-0\right)-3$

$$
\begin{aligned}
& M_{b a}=\frac{2 E(I)}{6}\left(2 \theta_{b}+0-0\right)+3 \\
& M_{b c}=\frac{2 E(8 / 3 I)}{6}\left(2 \theta_{b}+\theta_{c}-0\right)-6 \\
& M_{c b}=\frac{2 E(8 / 3 I)}{6}\left(2 \theta_{c}+\theta_{b}-0\right)+6 \\
& M_{b a}=-M_{b c} \\
& M_{c b}=0 \\
& S O L V E \Rightarrow M_{a b}=-2 \quad M_{b a}=5 \quad M_{b c}=-5 \quad M_{c b}=0 \quad k N * m \\
& \left(\theta_{c}=\frac{-4.875}{E I}, \theta_{b}=\frac{3}{E I}\right) \text { radians }
\end{aligned}
$$

The methods presented in this chapter on Classical Structural Analysis put into practice some of the ideas illustrated in statics and mechanics of materials, namely, that the distribution of forces in a frame is influenced by not only overall geometry but also by relative member stiffnesses. Courses on Matrix Structural Analysis (or FEA) present a more elegant method for solving for forces in statically indeterminate systems, utilizing linear and rotational deformation compatibility at every joint, for example, if beam and column "elements" are used. FEA is less intuitive, but is the method that is used by structural analysis computer software due to its versatility and computational efficiency when it comes to transforming analysis methods into computer algorithms. Just as courses on Numerical Methods should typically be taken after Differential Equations, Matrix Structural Analysis should be taken after Classical Structural Analysis. The methods for solving differential equations of motion for a simple system or for solving for the member forces in a simple frame, by hand, are entirely different, than the methods or algorithms that would be used by software to solve more complex dynamic or static problems. Courses on Matrix Structural Analysis and the related field of Finite Element Analysis are typically taken at the graduate level.

Works Cited

Hsieh, Yuan-Yu, and S.T. Mau. Elementary Theory of Structures: Fourth Edition.
Prentice Hall. Upper Saddle River, NJ 1995.
Trifunac, Mihailo. Lecturer. University of Southern California. CE358. Fall 2005.

Appendix

