
 

Castigliano’s second theorem 
 
“the first partial derivative of the total strain energy of the structure with respect to one of the 
applied actions gives the displacement along that action” 
 

P  corresponding displacement (deflection or rotation) along P, 
where P = particular force or couple 
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For a loaded beam, total strain energy W = 
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  (derived in the section titled “External work 

and internal work”) 
 

For a loaded truss, total strain energy W =  AE2

LS2

 

Note:  M = ,PmPmMM 221121  where M = bending moment at any section 

1M = moment at any section due to load 1P  

1m = bending moment at any section due to a unit load in place of 1P  
 
The fact that 1M  can be represented by the product of 1m  and 1P  (and the same for 2M , 2m , 

and 2P ) and the fact that M can be represented by the sum of 21 MandM , are both important 
principles made possible by the principle of superposition. 
 
Using the Chain Rule for derivatives (skipped work) ; 
 
Castigliano’s Theorem for beams :       Castigliano’s Theorem for trusses : 
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We can easily show that Castigliano’s Theorem and the unit load method are really one in the 
same: 
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Similarly, 
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, as expected. 

 
 note:  Theorem applies for   calculations as well. 
 
 
e.g. 1 
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e.g. 2 
Castigliano’s Theorem clearly works with multiple loads and can also work at points where a 
load is not present, by placing an imaginary load 1P  at the point of interest and setting up the 

equation for 1  in terms of 1P .  Then, set 1P = 0 either before or after integrating/summing. 
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e.g. 3   (same truss as the truss example in previous section) 
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note:  This result may seem odd. Since 
the top chord is in compression, one 
might expect to see movement at joint D 
to the left. 
 
The fact that joint D moves to the right 
is entirely due to the fact that our left 
pin is immovable and our right roller 
slides to the right.  This is, in fact, 
exactly how bridges are constructed.  
Bridge structures are exposed to the 
elements, so the bridge sits on a roller 
to allow for expanding/contracting due 
to temperature fluctuations. (See the 
diagrams below)  So, joint D would 

move to the right, as we’ve found. 
 
 
 
 
 
 



 
 
For beams in buildings, we should remember that the typical left pin/right roller is not the 
reality.  Typical beams in buildings do not actually sit on rollers, but are pin/pin.  The left 
pin/right roller idealization for typical beams yields exactly the same results as a pin/pin, 
however, because of all of our beam assumptions.  These assumptions include assuming the 
supports are at the neutral axis (a perfectly valid assumption for typical beams) which 
PREVENTS any horizontal reaction from creating a moment due to eccentricity, the idea of 
conservative force which PREVENTS any horizontal reaction from creating a moment due to the 
beam’s curvature, and the neglecting of axial deformation.  All of these assumptions result in 
pin/pin and pin/roller yielding identical results.  I.e. we can use the methods in the following 
sections for finding redundant forces and we would see that the horizontal force is zero for the 
case of a pin/pin beam with vertical loads, as would obviously be the case for a pin/roller.  We 
can then use formulas we already know from this and previous sections for finding deflections 
and we would see that the vertical deflections are also identical for pin/pin versus pin/roller.  
Does this seem reasonable? 
 
A beam that is pin-pin is restrained against horizontal motion, whereas a beam that is idealized 
as pin/roller or roller/roller is not restrained.  Intuitively, this makes a difference.  Intuitively, if 
subjected only to vertical force, the beam that is pin/pin will still have horizontal reactions 
whereas the beam that is roller/roller or pin/roller will not have horizontal reactions, since it is 
free to move.  However, these horizontal reactions are small and, intuitively, are small enough to 
be neglected.  In practice, the typical beams analyzed in this manner (simple supports) are 
checked for vertical force and vertical deflections, which intuitively would NOT be 
SIGNIFICANTLY affected by the pin/pin restraints.  In practice, the typical beams are 
completely ignored when lateral drifts are checked.  So, luckily, we don’t need to conclude that 
all beam-related formulas up to this point are false and develop new formulas.  The fact that 
pin/pin or pin/roller makes no difference for vertical forces, horizontal forces, and vertical 
deflections of our typical beams seems reasonable, because in reality the differences would in 
fact be very small. 
 
Unlike typical beams, the supports of moment frames and braced frames and trusses should 
always be modeled exactly how they are actually built.  As we will see in the following sections, 
when we consider a system of beams or bars, such as a moment frame, horizontal reactions will 



be developed from vertical forces. We will also consider a pin/pin truss.  Unlike a beam, a truss 
that is pin/pin is different than a truss that is pin/roller.  A truss will have different forces and 
deflections, depending on the support configuration. 
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