Composite Structure

e.g. 1

note: If $\alpha \to 90^{\circ}$ and $E_1 \to \infty$, then we have a prop-cantilevered beam with $\Psi = \frac{5P}{16}$

Choose values:

 $E = E_1, P = 20, \ \alpha = 30^\circ, L = 10, \ L_1 = 12, I = \frac{\pi}{64} (.3)^4, A = \pi (.3)^2, \ A_1 = \pi (.1)^2$ $\Rightarrow (skip work)$ $\Psi = 12.47 (with axial deformation)$ $\Psi = 12.50 (without inclusion of axial deformation)$

 $T_2 = 1.4175kN$ $T_1 = .945kN$ (axial deformation only) (different lengths and areas will result in different solutions)

Bending Only:

ADFB deforms in bending ; no axial deformation allowed in DC or FE

Unit load method : $\stackrel{f}{\rightarrow} \Sigma M_A : R_F(2b) - 1.26(3b) = 0 \Longrightarrow R_F = 1.89kN$ $\uparrow^+ \Sigma F_y : 1.89 - 1.26 - R_A = 0 \Longrightarrow R_A = .63kN$

$$0 \le x \le 2b^-$$
: $M(x) = -.63x$
 $2b^+ \le x \le 3b^-$: $M(x) = 1.26x - 3.78b$

$$\Delta = \int_{0}^{b} \frac{(-.63x)(-.5x)}{EI} dx + \int_{b}^{2b} \frac{(-.63x)(.5x-b)}{EI} dx + \int_{2b}^{3b} \frac{(1.26x-3.78b)(0)}{EI} dx = \frac{.315b^{3}}{EI}$$

$$\delta = \int_{0}^{b} \frac{(-.5x)^{2}}{EI} dx + \int_{b}^{2b} \frac{(.5x-b)^{2}}{EI} dx + 0 = \frac{.1667b^{3}}{EI}$$

$$\Delta + \delta T_{I} = 0 \qquad \qquad \frac{.315b^{3}}{EI} + \frac{.1667b^{3}}{EI} T_{I} = 0$$

$$T_{I} = -1.890kN \quad T_{2} = 2.835kN \quad (from equilibrium or from same process on T_{2})$$

(bending only)

To treat the structure as a composite member, we need the moment of inertia I for beam ADFB, as well as "b" :

 $Take I = \frac{\pi}{64} (.006)^4 m^4, b = .3m$ Choose T_1 as the redundant: $Total \ elongation \ of \ member \ DC = \left(\frac{.315b^3}{EI} + \frac{.16667b^3T_1}{EI}\right) + \frac{2T_1(.4)}{E(\frac{\pi}{4}(.004)^2)} = 0$ $\Rightarrow T_1 = -1.888kN$

The inclusion of axial deformation has no significant effect on the solution, for this problem.

note: Previous analysis of the statically indeterminate one bay frame (with the beam loaded uniformly) resulted in each vertical support reaction being equal to exactly one-half of the total load (obviously the exact answer) despite the neglecting of axial deformation. This is because this frame was symmetrical (there are no relative axial displacements).

Works Cited

Hsieh, Yuan-Yu, and S.T. Mau. <u>Elementary Theory of Structures: Fourth Edition</u>. Prentice Hall. Upper Saddle River, NJ 1995.

Trifunac, Mihailo. Lecturer. University of Southern California. CE358. Fall 2005.